K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2023

1) \(x^2+2x+1=\left(x+2\right)\sqrt[]{x^2+1}\left(1\right)\)

\(\Leftrightarrow x^2+2x+1=x\sqrt[]{x^2+1}+2\sqrt[]{x^2+1}\left(x\ge-2\right)\)

\(\Leftrightarrow\left(x^2+2x+1\right)^2=\left(x\sqrt[]{x^2+1}+2\sqrt[]{x^2+1}\right)^2\)

\(\Leftrightarrow x^4+4x^2+1+4x^3+2x^2+4x=x^2\left(x^2+1\right)+4\left(x^2+1\right)+4x\left(x^2+1\right)\)

\(\Leftrightarrow x^4+4x^3+6x^2+4x+1=x^4+x^2+4x^2+4+4x^3+4\)

\(\Leftrightarrow x^4+4x^3+6x^2+4x+1=x^4+4x^3+5x^2+4x+4\)

\(\Leftrightarrow x^2=3\)

\(\Leftrightarrow x=\pm\sqrt[]{3}\left(Tm.x\ge-2\right)\)

Vậy nghiệm của phương trình \(\left(1\right)\) là \(x=\pm\sqrt[]{3}\)

11 tháng 12 2023

2) \(P=\sqrt[]{x^2-2x+13}+4\sqrt[]{x-3}\)

Ta có : 

\(\sqrt[]{x^2-2x+13}=\sqrt[]{x^2-2x+1+12}=\sqrt[]{\left(x-1\right)^2+12}\ge\sqrt[]{12}=2\sqrt[]{3},\forall x\in R\)

\(4\sqrt[]{x-3}\ge0,\forall x\ge3\)

\(\Rightarrow P=\sqrt[]{x^2-2x+13}+4\sqrt[]{x-3}\ge\sqrt[]{4+12}+0=4\left(khi.x=3\right),\forall x\ge3\)

Vậy \(Min\left(P\right)=4\left(tại.x=3\right)\)

31 tháng 10 2021

\(1,\\ a,ĐK:\left\{{}\begin{matrix}x\ge0\\x+5\ge0\end{matrix}\right.\Leftrightarrow x\ge0\\ b,Sửa:B=\left(\sqrt{3}-1\right)^2+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+\dfrac{2\sqrt{3}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\\ B=4-2\sqrt{3}+2\sqrt{3}=4\\ 3,\\ =\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}\right]\cdot\dfrac{\sqrt{x}-3+2-2\sqrt{x}}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\left(1-\sqrt{x}\right)\cdot\dfrac{-\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(\sqrt{x}-3\right)}-2\\ =\dfrac{-\sqrt{x}-1}{\sqrt{x}-3}-2=\dfrac{-\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{-3\sqrt{x}+5}{\sqrt{x}-3}\)

10 tháng 8 2018

đk: \(x\ge0\)và      \(x\ne1\)

\(\Leftrightarrow P=\frac{x-1+\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-1}\right)}-\frac{2x-10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow P=\frac{x-1+x+\sqrt{x}-6-2x+10}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow P=\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\frac{1}{\sqrt{x}-1}\)

để P > 0

\(\Leftrightarrow1>\sqrt{x}-1\)

\(\Leftrightarrow-\sqrt{x}>-2\)

\(\Leftrightarrow\sqrt{x}< 2\)

\(\Leftrightarrow x< 4\)

có sai xót mong m.n bỏ qa cho ♥

13 tháng 11 2021

\(a,P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\\ P=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ P=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}+3}\\ b,P=\dfrac{-3}{\sqrt{x}+3}\ge\dfrac{-3}{0+3}=-1\\ P_{min}=-1\Leftrightarrow x=0\)