cho x,y la số nguyên
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\)
cm x=y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x,y >1
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\\ \)
\(\Leftrightarrow\sqrt{x^2+5}-\sqrt{y^2+5}+\left(\sqrt{x-1}-\sqrt{y-1}\right)+x^2-y^2=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right).\left(\sqrt{x^2+5}+\sqrt{y^2+5}\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(\sqrt{x-1}-\sqrt{y-1}\right).\left(\sqrt{x-1}+\sqrt{y-1}\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\frac{\left(x^2+5\right)-\left(y^2+5\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(x-1\right)-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\frac{x^2-y^2}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right).\left(\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)
\(\Rightarrow x-y=0\Leftrightarrow x=y\)
Giả sử x=y
Khi đó:
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2\)
\(=\sqrt{y^2+5}+\sqrt{x-1}+y^2\)
Luôn đúng
Vậy ta suy ra đpcm
1. \(y'=\sqrt{x-2}+\dfrac{x+1}{2\sqrt{x-2}}\)
2. \(y'=-\dfrac{\dfrac{1}{2\sqrt{x^2+4x+5}}\cdot\left(x^2+4x+5\right)'}{x^2+4x+5}=-\dfrac{x+2}{\sqrt{\left(x^2+4x+5\right)^3}}\)
3. \(y'=\dfrac{\dfrac{x-1}{2\sqrt{x+1}}-\sqrt{x+1}}{\left(x-1\right)^2}=\dfrac{-x-3}{\left(x-1\right)^2\sqrt{x+1}}\)
4. \(y'=\dfrac{\sqrt{x^2+1}-\dfrac{x+1}{2\sqrt{x^2+1}}\cdot\left(x^2+1\right)'}{x^2+1}=\dfrac{\dfrac{2\left(x^2+1\right)-\left(x+1\right)\cdot2x}{2\sqrt{x^2+1}}}{x^2+1}=\dfrac{1-x}{\sqrt{\left(x^2+1\right)^3}}\)
5. \(y'=-\dfrac{\dfrac{\left(4-3x^2\right)'}{2\sqrt{4-3x^2}}}{4-3x^2}=\dfrac{3x}{\sqrt{\left(4-3x^2\right)^3}}\)
1. \(y'=\sqrt{x-2}+\dfrac{x+1}{2\sqrt{x-2}}=\dfrac{3x-3}{2\sqrt{x-2}}\)
2. \(y'=-\dfrac{\left(\sqrt{x^2+4x+5}\right)'}{x^2+4x+5}=-\dfrac{x+2}{\left(x^2+4x+5\right)\sqrt{x^2+4x+5}}\)
3. \(y'=\dfrac{\dfrac{\left(x-1\right)}{2\sqrt{x+1}}-\sqrt{x+1}}{\left(x-1\right)^2}=\dfrac{-x-3}{2\left(x-1\right)^2\sqrt{x+1}}\)
4. \(y'=\dfrac{\sqrt{x^2+1}-\dfrac{x\left(x+1\right)}{\sqrt{x^2+1}}}{x^2+1}=\dfrac{1-x}{\left(x^2+1\right)\sqrt{x^2+1}}\)
5. \(y'=\dfrac{\left(\sqrt{4-3x^2}\right)'}{3x^2-4}=\dfrac{-3x}{\left(3x^2-4\right)\sqrt{4-3x^2}}\)
a: \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}+1-\sqrt{5}+1\)
=2
c: \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)
d: \(\dfrac{y-2\sqrt{y}+1}{\sqrt{y}-1}=\sqrt{y}-1\)
Lời giải:
ĐK: \(x,y\geq 1\)
PT \(\Leftrightarrow (\sqrt{x^2+5}-\sqrt{y^2+5})+(\sqrt{x-1}-\sqrt{y-1})+(x^2-y^2)=0\)
\(\Leftrightarrow \frac{x^2-y^2}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+(x^2-y^2)=0\)
\(\Leftrightarrow (x-y)\left(\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)
Với mọi \(x,y\geq 1\) dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn $0$
Do đó: \(x-y=0\Leftrightarrow x=y\) (dpcm)
ĐK,x\(\ge1,y\ge1\)
Ta có \(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\Leftrightarrow\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right)+\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x^2-y^2\right)=0\Leftrightarrow\dfrac{x^2+5-\left(y^2+5\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\dfrac{x-1-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x-y\right)\left(x+y\right)=0\Leftrightarrow\dfrac{\left(x-y\right)\left(x+y\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\dfrac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(x-y\right)\left(x+y\right)=0\Leftrightarrow\left(x-y\right)\left(\dfrac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\dfrac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)(*)
Ta lại có \(\dfrac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\dfrac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y>0\)
Vậy (*)\(\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Vậy \(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\) thì x=y
\(y'=\dfrac{\left(x+\sqrt{x^2+1}\right)'}{2\sqrt{x+\sqrt{x^2+1}}}=\dfrac{1+\dfrac{x}{\sqrt{x^2+1}}}{2\sqrt{x+\sqrt{x^2+1}}}=\dfrac{x+\sqrt{x^2+1}}{2\sqrt{x^2+1}.\sqrt{x+\sqrt{x^2+1}}}\)
\(=\dfrac{\sqrt{x+\sqrt{x^2+1}}}{2\sqrt{x^2+1}}\)
ĐK \(\hept{\begin{cases}x>1\\y>1\end{cases}}\)
Ta có \(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\)
\(\Leftrightarrow\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right)+\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\frac{x^2-y^2}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+x^2-y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left[\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right]=0\)
\(\Leftrightarrow x=y\)vì \(\left(\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)>0\forall x,y>1\)
Vậy \(x=y\left(đpcm\right)\)
ĐK \(x\ge1;y\ge1\)
Nếu x=y=1 thì x=y điều phải chứng minh
Nếu x,y không đồng thời bằng 1 thì bằng cách nhân với biểu thức liên hợp ta được
\(\sqrt{x^2+5}-\sqrt{y^2+5}+\sqrt{x-1}-\sqrt{y-1}+x^2-y^2=0\)
\(\Leftrightarrow\frac{x^2-y^2}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+x^2-y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left[\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right]=0\)
Vì \(x\ge1;y\ge1\Rightarrow x-y=0\Rightarrow x-y\)điều phải chứng minh