K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2023

\(A\cap B=\left\{{}\begin{matrix}x>m\\x\le\dfrac{2m-1}{3}\end{matrix}\right.\left(1\right)\)

 \(TH1:m< \dfrac{2m-1}{3}\)

\(\Leftrightarrow m-\dfrac{2m-1}{3}< 0\)

\(\Leftrightarrow\dfrac{m-1}{3}< 0\)

\(\Leftrightarrow m< 1\)

\(\left(1\right)\Leftrightarrow A\cap B=\left\{x\in Z|m< x\le\dfrac{2m-1}{3}\right\}\)

\(TH2:m>\dfrac{2m-1}{3}\)

\(\Leftrightarrow m-\dfrac{2m-1}{3}>0\)

\(\Leftrightarrow\dfrac{m-1}{3}>0\)

\(\Leftrightarrow m>1\)

\(\left(1\right)\Leftrightarrow A\cap B=\varnothing\)

14 tháng 9 2023

nếu thế thì thừa TH1 nhỉ?

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \(A = \{  - 2; - 1;0;1;2\} \)

\(B = \{  - 3; - 2; - 1;0;1;2;3\} \)

b) Mỗi phần tử của tập hợp A đều thuộc tập hợp B.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(A = \{ 3;2;1;0; - 1; - 2; - 3; -4; ...\} \)

Tập hợp B là tập các nghiệm nguyên của phương trình \(\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\)

Ta có:

 \(\begin{array}{l}\left( {5x - 3{x^2}} \right)\left( {{x^2} + 2x - 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}5x - 3{x^2} = 0\\{x^2} + 2x - 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \frac{5}{3}\end{array} \right.\\\left[ \begin{array}{l}x = 1\\x =  - 3\end{array} \right.\end{array} \right.\end{array}\)

Vì \(\frac{5}{3} \notin \mathbb Z\) nên \(B = \left\{ { - 3;0;1} \right\}\).

b) \(A \cap B = \left\{ {x \in A|x \in B} \right\} = \{  - 3;0;1\}  = B\)

\(A \cup B = \) {\(x \in A\) hoặc \(x \in B\)} \( = \{ 3;2;1;0; - 1; - 2; - 3;...\}  = A\)

\(A\,{\rm{\backslash }}\,B = \left\{ {x \in A|x \notin B} \right\} = \{ 3;2;1;0; - 1; - 2; - 3;...\} {\rm{\backslash }}\;\{  - 3;0;1\}  = \{ 3;2; - 1; - 2; - 4; - 5; - 6;...\} \)

21 tháng 7 2023

(Bấm máy tính tìm nghiệm)

\(A=\left\{-2;-1;2\right\}\)

\(B=\left\{0;1;2;3\right\}\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2019

Lời giải:

a)

\(\forall x\in\mathbb{Z}\) , để \(\frac{x^2+2}{x}\in\mathbb{Z}|\Leftrightarrow x+\frac{2}{x}\in\mathbb{Z}\Leftrightarrow \frac{2}{x}\in\mathbb{Z}\Leftrightarrow 2\vdots x\)

\(\Rightarrow x\in \left\{\pm 1;\pm 2\right\}\)

Vậy \(A=\left\{-2;-1;1;2\right\}\)

b)

Các tập con của A mà số phần tử nhỏ hơn 3 là:

\(\left\{-2\right\}; \left\{-1\right\};\left\{1\right\};\left\{2\right\}\)

\(\left\{-2;-1\right\}; \left\{-2;1\right\}; \left\{-2;2\right\};\left\{-1;1\right\};\left\{-1;2\right\}; \left\{1;2\right\}\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

a)

\(\forall x\in\mathbb{Z}\) , để \(\frac{x^2+2}{x}\in\mathbb{Z}|\Leftrightarrow x+\frac{2}{x}\in\mathbb{Z}\Leftrightarrow \frac{2}{x}\in\mathbb{Z}\Leftrightarrow 2\vdots x\)

\(\Rightarrow x\in \left\{\pm 1;\pm 2\right\}\)

Vậy \(A=\left\{-2;-1;1;2\right\}\)

b)

Các tập con của A mà số phần tử nhỏ hơn 3 là:

\(\left\{-2\right\}; \left\{-1\right\};\left\{1\right\};\left\{2\right\}\)

\(\left\{-2;-1\right\}; \left\{-2;1\right\}; \left\{-2;2\right\};\left\{-1;1\right\};\left\{-1;2\right\}; \left\{1;2\right\}\)

20 tháng 11 2021

\(a,\)\(A=\left\{x\in R|x< 3\right\}\Rightarrow A=\left(\text{ -∞;3}\right)\)

\(B=\left\{-1;0;1;2;3;4;5\right\}\)

\(\Rightarrow A\cap B=\left\{-1;0;1;2\right\}\)

\(b,x=-1\Rightarrow y=1-2\left(-1\right)+m=m+3\) 

\(x=1\Rightarrow y=1-2+m=m-1\)

\(\Rightarrow C=(m-1;m+3]\subset A\)

\(\Rightarrow C\subset A\Leftrightarrow m+3< 3\Leftrightarrow m< 0\)

 

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Ta có: \(A = \left\{ {x \in \mathbb{Z}| - 2 \le x \le 3} \right\} = \{  - 2; - 1;0;1;2;3\} \)

Và \(B = \{ x \in \mathbb{R}|{x^2} - x - 6 = 0\}  = \{  - 2;3\} \)

Khi đó:

Tập hợp \(A\,{\rm{\backslash }}\,B\) gồm các phần tử thuộc A mà không thuộc B. Vậy\(A\,{\rm{\backslash }}\,B = \{  - 1;0;1;2\} \).

 Tập hợp \(B\,{\rm{\backslash }}\,A\) gồm các phần tử thuộc B mà không thuộc A. Vậy \(B\,{\rm{\backslash }}\,A = \emptyset \)

15 tháng 9 2023

a) \(2x^3-3x^2-5x=0\)

\(x\left(x+1\right)\left(2x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=-1\left(TM\right)\\x=\dfrac{5}{2}\left(L\right)\end{matrix}\right.\)

\(A=\left\{-1\right\}\)

b) \(x< \left|3\right|\)\(\Leftrightarrow-3< x< 3\)

\(B=\left\{-2;-1;1;2\right\}\)

c) \(C=\left\{-3;3;6;9\right\}\)

15 tháng 9 2023

a) \(A=\left\{x\in Z|2x^3-3x^2-5x=0\right\}\)

\(2x^3-3x^2-5x=0\)

\(\Leftrightarrow x\left(2x^2-3x-5\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow A=\left\{0;-1\right\}\)

b) \(B=\left\{-2;-1;0;1;2\right\}\)

c) \(C=\left\{-3;3;6;9\right\}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \({x^2} - 6 = 0 \Leftrightarrow x =  \pm \sqrt 6  \in \mathbb{R}\)

Vì \(\sqrt 6  \in \mathbb{R}\) và \( -\sqrt 6  \in \mathbb{R}\) nên \( A = \left\{ { \pm \sqrt 6 } \right\}\)

Nhưng \( \pm \sqrt 6  \notin \mathbb{Z}\) nên không tồn tại \(x \in \mathbb{Z}\) để \({x^2} - 6 = 0\)

Hay \(B = \emptyset \).