K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

a, \(A=\frac{6n-1}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=\frac{2.\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Để A có giá trị là số nguyên 

=>5/3n+2 phải là số nguyên

=>5 chia hết cho 3n+2

=>3n+2 thuộc Ư(5)={-1;1;-5;5}

Vì 3n+2 là số chia cho 3 dư 2

=>3n+2=5

=>3n=5-2

=>3n=3

=>n=3:3

=>n=1

15 tháng 9 2016

Ý, Nguyễn Lê Thanh Hà là nick cũ của mik nè.Tuần này lại mất thêm 2 nick. Tổng cộng mik mất nick 3 lần r mà chẳng lấy lại dc! Ko bít đứa nào hack r đổi mật khẩu nx lun!!

19 tháng 7 2018

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

19 tháng 7 2018

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!

\(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}\)

\(=\frac{3\left(2n-1\right)+8}{2n-1}\)

\(=3+\frac{8}{2n-1}\)

Để B nguyên thì \(2n-1\inƯ\left(8\right)\)

\(\Rightarrow2n-1=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

Rồi bạn cứ thế vào . Trường Hợp ở đây là : \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)

Ta có : \(2n-1=1\Rightarrow n=1\)

\(2n-1=-1\Rightarrow n=0\)

\(2n-1=2\Rightarrow n=1,5\)

\(2n-1=-2\Rightarrow n=-0,5\)

\(2n-1=4\Rightarrow n=2,5\)

\(2n-1=-4\Rightarrow n=-1,5\)

\(2n-1=8\Rightarrow n=4,5\)

\(2n-1=-8\Rightarrow n=-3,5\)

5 tháng 8 2016

Để B nguyên thì 6n + 5 chia hết cho 2n - 1

=> 6n - 3 + 8 chia hết cho 2n - 1

=> 3.(2n - 1) + 8 chia hết cho 2n - 1

Do 3.(2n - 1) chia hết cho 2n - 1 => 8 chia hết cho 2n - 1

Mà 2n - 1 là số lẻ => \(2n-1\in\left\{1;-1\right\}\)

=> \(2n\in\left\{2;0\right\}\)

=> \(n\in\left\{1;0\right\}\)

20 tháng 11 2017

A, 

Từ đề bài ta có

\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

suy ra d=1 suy ra đpcm

B nhân 3 vào số đầu tiên

nhâm 2 vào số thứ 2

rồi trừ đi được đpcm

C,

Nhân 2 vào số đầu tiên rồi trừ đi được đpcm

2 tháng 5 2017

1)

\(\frac{3n+2}{n-1}\) là số nguyên khi \(\left(3n+2\right)⋮\left(n-1\right)\).

\(3n+2=3n-3+3+2=3\left(n-1\right)+5\)

Mà \(3\left(n-1\right)⋮\left(n-1\right)\) nên để \(\left[3\left(n-1\right)+5\right]⋮\left(n-1\right)\) thì \(5⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(5\right)\) hay \(\left(n-1\right)\in\) { -5; -1; 1; 5 }      ( Không viết được dấu ngoặc nhọn nên mình viết vậy nhé )

\(\Rightarrow n\in\)​ { -4; 0; 2; 6 }

Vậy \(n\in\)​ { -4; 0; 2; 6 }

2)

a)\(\frac{1}{6};\frac{1}{3};\frac{1}{2};...\)

Quy đồng mẫu các phân số ta có:

\(\frac{1}{6};\frac{2}{6};\frac{3}{6};...\)

\(\Rightarrow\)3 phân số tiếp theo là \(\frac{4}{6}\)hay \(\frac{2}{3}\)\(\frac{5}{6}\)và \(\frac{6}{6}\)hay 1.

Vậy 3 phân số tiếp theo là \(\frac{2}{3}\)\(\frac{5}{6}\)và 1.

b)

Làm tương tự câu a) ta có 3 phân số tiếp theo là \(\frac{7}{20};\frac{2}{5};\frac{9}{20}\).

c)

Làm tương tự câu a) ta có 3 phân số tiếp theo là \(\frac{11}{30};\frac{2}{5};\frac{13}{30}\)

25 tháng 2 2017

Ta gọi UWCLN của 2n-1 và 4n+2 là d

Ta có 2n-1 chia het cho d vậy 4n-2 chia hết cho d

         4n+2 chia hết cho d vậy 4n+2-4n-2 chia het cho d

Vậy 4 chia hết cho d nên d=1 để 2n-1/4n+2 là tối giản

Vậy 2n-1/4n+2 là tối giản