K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Yêu cầu đề là gì bạn nên ghi chú rõ ra nhé.

14 tháng 8 2021

\(P=-3xy\left(xy-2y^2\right)-x^2\left(x^2-y^2\right)+2y^2\left(x^2-3xy\right)\)

\(P=-3x^2y^2+6xy^3-x^4+x^2y^2+2x^2y^2-6xy^3\)

\(P=-x^4\)

Thay x = -2 vào P, ta có:

\(P=-\left(-2\right)^4=-16\)

Ta có: \(P=-3xy\left(xy-2y^2\right)-x^2\left(x^2-y^2\right)+2y^2\left(x^2-3xy\right)\)

\(=-3x^2y^2+6xy^3-x^4+x^2y^2+2x^2y^2-6xy^3\)

\(=-x^4\)

\(=-16\)

10 tháng 6 2023

A=x^3 + y^3 + 3xy(x+y)
  =x+3x^y+3xy^2+y^3
  =(x+y)^3=2^3=8
B=x^2+2xy+y^2+4
  =(x+y)^2+4=4+4=8

C=x^3+y^3+3xy(x+y)+7(x+y)

  =(x+y)^3+7(x+y)
  =2^3+7.2
  =8+14=22

5 tháng 8 2017

Câu bc mình ghi nhầm nên dừng làm

5 tháng 8 2017

kết bạn với mình đi

1 tháng 10 2017

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

11 tháng 9 2018

a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(A=x^2+2x+y^2-2y-2xy+37\)

\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)

\(A=\left(x-y+1\right)^2+36\)

Thay x - y = 7 vào A

\(A=\left(7+1\right)^2+36\)

\(A=8^2+36\)

\(A=64+36\)

\(A=100\)

b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)

\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)

\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)

Thay x - y = 7 vào B

\(B=7^3+7^2-9\)

\(B=343+49-9\)

\(B=383\)

c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)

\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)

\(C=\left(x-y\right)^3-\left(x-y\right)^2\)

Thay x - y = 7 vào C

\(C=7^3-7^2\)

\(C=343-49\)

\(C=294\)

d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)

\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)

\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)

\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)

Thay x - y = 7 vào D

\(D=7^3+7^2-95\)

\(D=343+49-95\)

\(D=297\)

11 tháng 7 2023

Yêu cầu của đề là gì ?

11 tháng 7 2023

Tính

 

20 tháng 11 2023

Please

 

5 tháng 3 2017

N = -1/10 xy +4/3xy-6xy

đúng 100000000000000000000000000% luôn bạn nhé

NV
22 tháng 3 2022

\(1=x+y+3xy\le x+y+\dfrac{3}{4}\left(x+y\right)^2\)

\(\Rightarrow3\left(x+y\right)^2+4\left(x+y\right)-4\ge0\)

\(\Rightarrow3\left(x+y+2\right)\left(x+y-\dfrac{2}{3}\right)\ge0\)

\(\Rightarrow x+y\ge\dfrac{2}{3}\) \(\Rightarrow\dfrac{1}{x+y}\le\dfrac{3}{2}\)

Đồng thời: \(x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{1}{2}.\left(\dfrac{2}{3}\right)^2=\dfrac{2}{9}\)

\(\Rightarrow-\left(x^2+y^2\right)\le-\dfrac{2}{9}\)

Từ đó ta có:

\(A=\sqrt{1-x^2}+\sqrt{1-y^2}+\dfrac{1-\left(x+y\right)}{x+y}=\sqrt{1-x^2}+\sqrt{1-y^2}+\dfrac{1}{x+y}-1\)

\(A\le\sqrt{2\left[2-\left(x^2+y^2\right)\right]}+\dfrac{1}{x+y}-1\le\sqrt{2\left(2-\dfrac{2}{9}\right)}+\dfrac{3}{2}-1=\dfrac{3+8\sqrt{2}}{6}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{3}\)