chứng minh tích của năm số tự nhiên liên tiếp thì chia hết cho 120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ousbdl
jvdajnvjl
nsdg
ouhqer
kgkrebvjdsjb
vq
wjkgb
Fbovafbeuonasf
a)Gọi 2 số tự nhiên liên tiếp đó lần lượt là a;a+1
Ta có:
a(a+1) chia hết 2 ( vì a ; a+1 là số liên tiếp nên có 1 số là số chẵn và 1 số là số lẻ)
b)Vì n chia hết n nên tích n số tự nhiên liên tiếp chia hết b
c,d ....
gọi 5 số liên tiếp đó là : a, a + 1, a + 2, a + 3,a + 4
=> tích của chúng là : a . (a + 1) . (a + 2) . (a + 3) . (a + 4)
trong tích của 5 số liên tiếp có ít nhất là 2 số chẵn liên tiếp nhau. Tích 2 số chẵn liên tiếp nhau chia hết cho 8 => a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)8 (1)
trong tích của 5 số liên tiếp sẽ có 1 số chia hết cho 5 => a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)5 (2)
trong tích của 5 số liên tiếp có tích của 3 số tự nhiên liên tiếp. Tích của 3 số tự nhiên liên tiếp chia hết cho 3 => a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)3 (3)
Từ (1), (2) và (3) => a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)120 vì 5 . 8 . 3 = 120 mà a . (a + 1) . (a + 2) . (a + 3) . (a + 4) \(⋮\)5;8;3
b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.
Theo đề bài ta có :
A = a(a + 1) (a + 2) + 6
Ta có 6 = 3x2 mà ( 3,2) = 1
A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2
A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3
Vậy tích của 3 STN liên tiếp chia hết cho 6.
Gọi a, a+1, a+2 lần lượi là 3 số nguyên liên tiếp ( a thuộc Z)
Tích a(a+1)(a+2) chia hết cho 3 khi một trong ba số trên chia hết cho 3.
Một số chia cho 3 thì có 3 trường hợp:
- a chia hết cho 3
- giả sử a chia 3 dư 1 thì (a+1) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
- giả sử a chia 3 dư 2 thì (a+2) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3.
=> Tích a(a+1)(a+2) luôn chia hết cho 3. (1)
Mà 3 trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 2 (2)
Vì ƯCLN(3;2) 1 nên từ (1) và (2) suy ra 3 số nguyên liên tiếp chia hết cho (2 . 3) = 6
Gọ 5 so tu nhien lien tiep co dang la :
a,a.1,a.2,a.3,a.4
Theo de bai ta co :
a.(a.1)+(a.2)+(a.3)+(a.4)
=a.5.(1.2.3.4)
=a.5.24
=a.120 chia het cho 120
Suy ra tich cua 5 so tu nhien lien tiep chia het cho 120
****
_ Gọi 5 số tự nhiên liên tiếp đó là : a , a + 1 , a + 2 , a + 3 , a + 4 .
Theo bài ra , ta có :
a x ( a + 1 ) x ( a + 2 ) x ( a + 3 ) x ( a + 4 )
= a x 5 x ( 1 x 2 x 3 x 4 )
= a x 5 x 24
Mà 5 x 24 = 120 .
=> a chia hết cho 120 .
_ Vậy tích của 5 số tự nhiên liên tiếp chia hết cho 120 .
Vô đường link này nè bạn
http://olm.vn/hoi-dap/question/144072.html
Gọi 5 số tự nhiên liên tiếp có dạng:a,a.1,a.2,a.3,a.4
Theo đề bài ta có:a.(a.1)+(a.2)+(a.3).(a.4)
=a.5.(1.2.3.4)
=a.5.24
=a.120chia hết 120
suy ra :tích của 5 số tự nhiên liên tiếp chia hết cho 120
1 x 2 x 3 x 4 x 5 = 120 mà 120 thì chia hết cho 120