K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ANDM có

\(\widehat{AND}=\widehat{AMD}=\widehat{MAN}=90^0\)

=>ANDM là hình chữ nhật

b: Xét ΔABC có

D là trung điểm của CB

DN//AB

Do đó: N là trung điểm của AC

Xét tứ giác ADCEcó

N là trung điểm chung của AC và DE

=>ADCE là hình bình hành

Hình bình hành ADCE có AC\(\perp\)DE

nên ADCE là hình thoi

c:

Xét ΔABC có

D là trung điểm của BC

DM//AC

Do đó: M là trung điểm của AB

Để AMDN là hình vuông thì AM=AN

mà \(AM=\dfrac{AB}{2};AN=\dfrac{AC}{2}\)

nên AB=AC

22 tháng 10 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

b: Xét tứ giác ABKI có

M là trung điểm chung của AK và BI

Do đó: ABKI là hình bình hành

=>KI//AB

mà AB\(\perp\)AC

nên KI\(\perp\)AC

Xét ΔCAI có

IK,CH là đường cao

IK cắt CH tại K

Do đó: K là trực tâm của ΔCAI

=>AK\(\perp\)IC

a: BC=20cm

AK=10cm

4 tháng 1 2023

làm như cứt

20 tháng 12 2022

a: Xét tứ giác ADCH có

M là trung điểm chung của AC và HD

góc AHC=90 độ

Do đó: ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

Do đó: ADHE là hình bình hành

 

6 tháng 11 2023

loading... 

a) Tứ giác ADME có:

∠AEM = ∠ADM = ∠EAD = 90⁰ (gt)

⇒ ADME là hình chữ nhật

b) Do HI = HA (gt)

⇒ H là trung điểm của AI

Do HK = HB (gt)

⇒ H là trung điểm của BK

Tứ giác ABIK có:

H là trung điểm của AI (cmt)

H là trung điểm của BK (cmt)

⇒ ABIK là hình bình hành

⇒ IK // AB

Mà AB ⊥ AC (∆ABC vuông tại A)

⇒ IK ⊥ AC

⇒ IK là đường cao của ∆ACI

Lại có:

AH ⊥ BC (do AH là đường cao của ∆ABC)

⇒ CH ⊥ AI

⇒ CH là đường cao thứ hai của ∆ACI

∆ACI có:

IK là đường cao (cmt)

CH là đường cao (cmt)

⇒ AK là đường cao thứ ba của ∆ACI

⇒ AK ⊥ IC

11 tháng 12 2023

a: Xét tứ giác AHCE có

D là trung điểm chung của AC và HE

=>AHCE là hình bình hành

Hình bình hành AHCE có \(\widehat{AHC}=90^0\)

nên AHCE là hình chữ nhật

b: AHCE là hình bình hành

=>AE//CH

mà H\(\in\)CI

nên AE//HI

Xét tứ giác AEHI có

AE//HI

AI//HE

Do đó: AEHI là hình bình hành

c: Xét ΔCAK có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAK cân tại C

Ta có: ΔCAK cân tại C

mà CB là đường cao

nên CB là phân giác của \(\widehat{ACK}\)

26 tháng 8 2016

a) Xét tứ giác EFCB có 

EF//BC (gt)

=> EFCB là hình thang

b)

Xét tam giác KHA và tam giác FAE có 

KA=AF (gt)

AH=AE(gt)

góc KAH = góc EAF (đđ)

=> tam giác KHA = tam giác FAE ( c-g-c)

=> góc HKA= góc AFE( c-g-t-ư) (1) 

mặt khác ta có EF//BC

=> góc AFE = góc ACB ( đồng vị ) (2)

(1)&(2)=>  góc HKA = góc ACB 

mà chúng ở vị trí so le trong nên KH//BC

xét tức giác KHBC có KH//BC (cmt)

=> KHBC là hình thang

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

mà góc BAC=90 độ

nên ABDC là hình chữ nhật

b,d: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

Suy ra: góc AFE=góc AHE=góc ABC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>góc MAC=góc ACB

=>góc MAC+góc EFA=90 độ

=>AM vuông góc với EF

c: Xét ΔADI có

H,M lần lượt là trung điểm của AI và AD

nên HM là đường trung bình

=>HM//DI

=>DI//BC

Xét ΔCIA có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCIA cân tại C

=>CI=CA=DB

=>BIDC là hình thang cân