Rút gọn
A=2/3+2/3^2+2/3^3+. +2/3^1000
(mũ ở dưới mẫu nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=2+2^2+2^3+...+2^{2017}\)
\(A=2\left(1+2^1+2^2+...+2^{2016}\right)\)
\(A=2.\dfrac{2^{2016+1}-1}{2-1}\)
\(A=2.\left(2^{2017}-1\right)=2^{2018}-2\)
Câu b bạn xem lại đề
\(A=2^1+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2\cdot\left(2+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow2A=2^2+2^3+...+2^{11}\)
\(\Rightarrow2A-A=\left(2^2+2^3+...+2^{11}\right)-\left(2+2^2+...2^{10}\right)\)
\(\Rightarrow A=2^{11}-2\)
\(B=3^1+3^2+...+3^{100}\)
\(\Rightarrow3B=3\cdot\left(3+3^2+...+3^{100}\right)\)
\(\Rightarrow3B=3^2+3^3+...+3^{101}\)
\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2B=3^{101}-3\)
\(\Rightarrow B=\dfrac{3^{101}-3}{2}\)
\(S=1+3^2+3^4+...+3^{2022}\)
\(3^2S=9S=3^2+3^4+3^6+...+3^{2024}\)
\(S=\dfrac{9S-S}{8}=\left(3^{2024}-1\right):8\)
d, không đáp án nào đúng
Lời giải:
$S=1+3^2+3^4+....+3^{2022}$
$9S=3^2S=3^2+3^4+3^6+...+3^{2024}$
$\Rightarrow 9S-S=3^{2024}-1$
$\Rightarrow S=\frac{3^{2024}-1}{8}$
Đáp án D.
\(\frac{2^3\cdot5^2\cdot11^2\cdot7}{2^3\cdot5^3\cdot7^2\cdot11}\)
\(=\frac{2^3\cdot5^2\cdot11\cdot11\cdot7}{2^3\cdot5^2\cdot5\cdot7\cdot7\cdot11}\)
\(=\frac{11}{5\cdot7}=\frac{11}{35}\)
ta có 2^3*5^2*11^2*(7/2)^3*5^3*7^2*11
=(2^3*(7/2)^3*7^2)*(5^2*5^3)*(11^2*11)
=(2^3*7^3/2^3*7^2)*5^5*11^3
=7^5*5^5*11^3
P = 1 + 3 + 3^2 + 3^3 + 3^4 + ...+ 3^49
=> 3P = 3 + 3^2 + 3^3 + 3^4 + 3^5 + ...+ 3^50
=> 3P-P = 3^50 - 1
2P = 3^50 - 1
\(P=\frac{3^{50}-1}{2}\)
2P=3+3+32+33+...+349+350
2P-P=350-1
=>P=350-1
Vậy biểu thức rút gọn nhất của P là 350-1
Mình làm ngắn gọn nhé.
\(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}\)
\(\Rightarrow A=2^{51}-1\)
\(B=1+3+...+3^{66}\)
\(3B=3+3^2+...+3^{67}\)
\(2B=3+3^2+...+3^{67}-1-3-...-3^{66}\)
\(2B=3^{67}-1\)
\(B=\frac{3^{67}-1}{2}\)
A = 2/3 + 2/3² + 2/3³ + ... + 2/3¹⁰⁰⁰
A/3 = 2/3² + 2/3³ + 2/3⁴ + ... + 2/3¹⁰⁰¹
-2A/3 = A/3 - A
= (2/3² + 2/3³ + 2/3⁴ + ... + 2/3¹⁰⁰¹) - (2/3 + 2/3² + 2/3³ + ... + 2/3¹⁰⁰⁰)
= 2/3¹⁰⁰¹ - 2/3
A = (2/3¹⁰⁰¹ - 2/3) : (-2/3)
= 1 - 1/3¹⁰⁰⁰