Chứng minh rằng 21+22+23+24+........+100:3
Giải hộ mình với nha các bạn
Thank các bạn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(55-7.\left(x+3\right)=6\)
\(7.\left(x+3\right)=55-6\)
\(7.\left(x+3\right)=49\)
\(x+3=49:7\)
\(x+3=7\)
\(x=7-3\)
\(x=4\)
d) \(-14-x+\left(-15\right)=-10\)
\(-29-x=-10\)
\(x=-29+10\)
\(x=-19\)
-----------------------------
Số số hạng của A:
\(60-1+1=60\) (số)
Do \(60⋮6\) nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 6 số hạng như sau:
\(A=\left(2+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5\right)+2^7.\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}.\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(=2.63+2^7.63+...+2^{55}.63\)
\(=63.\left(2+2^7+...+2^{55}\right)\)
\(=21.3.\left(2+2^7+...+2^{55}\right)⋮21\)
Vậy \(A⋮21\)
55-7(x+3)=6
7(x+3)=55-6=49
(x+3)=49:7=7
x=7-3=4
(-14)-x + (-15)=-10
(-14)-x=-10-15=-25
x =-14-25=-39
A chia hết 31 chứ
lấy ví dụ n là 0;1;2
nếu thay n = 0 thì ta có 0^2.(0^2-1)=0 0 chia hết cho 24
nếu thay n = 1 thì ta có 1 ^ 2.( 1^2-1)=0 0chia hết cho 24
nếu thay n = 2 thì ta có 2^2 .(2^2-1)=12 nếu 12 chia 24 thì sẽ được 0,5
nếu thay n = 3 thì ta có 3^2 . (3^2-1)=72 72 chia hết cho 24
và cứ như vậy thì ta có n ^ 2 . ( n ^ 2 - 1) sẽ chia hết cho 24 nha bn đây là ý kiến riêng của mình nha
k mình nha bn
\(a)3784+23-3785-15\)
\(= \left(3784-3785\right)+\left(23-15\right)\)
\(=-1+8=7\)
\(b)21+22+23+24-11-12-13-14\)
\(=\left(21-11\right)+\left(22-12\right)+\left(23-13\right)+\left(24-14\right)\)
\(=10+10+10+10=40\)
Bài 1: 100 - 94 + 90 - 84 + 80 - 74 + 70 - 64 + 60 - 50 =34
Bài 2: 78 . 31 + 78 . 24 + 78 . 17 + 22 . 72= 7200
Bài 3: 2 . 450 . 25 . 8 =180000
Bài 1: 100 - 94 + 90 - 84 + 80 - 74 + 70 - 64 + 60 - 50
=6+6+6+6+6=6x5=30
Bài 2: 78 . 31 + 78 . 24 + 78 . 17 + 22 . 72
=78x(31+24+17+22)
=...
Bài 3: 2 . 450 . 25 . 8 =450x200=900000
Lời giải:
$22+23-25+27-29+31-33$
$=22+(23-25)+(27-29)+(31-33)$
$=22+(-2)+(-2)+(-2)=22+(-2).3=22-6=16$
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6\left(1+2^2+...+2^{98}\right)⋮6\)
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3A=1-\frac{2}{3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(4A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3B=3+1+...+\frac{3}{3^{98}}\)
\(2B=3-\frac{1}{3^{99}}\)
\(B=\frac{3}{2}-\frac{1}{3^{99}.2}\)
Thay B vào 4A ta có:
\(4A=\frac{3}{2}-\frac{1}{3^{99}.2}\)
\(A=\frac{3}{2.4}-\frac{1}{3^{99}.2.4}\)
\(A=\frac{3}{8}-\frac{1}{3^{99}.8}\)
Vì \(\frac{3}{8}>\frac{3}{16}\)
\(\Rightarrow\frac{3}{8}-\frac{1}{3^{99}.8}< \frac{3}{16}\)
Vậy \(A< \frac{3}{16}\)
Ta có:
A = 2 + 22 + 23 + 24 + ... + 299 + 2100
A = (2 + 22 ) + (23 + 24 ) + ... + (299 + 2100 )
A = 2 . (1 + 2) + 23 . (1 + 2) + ... + 299 . (1 + 2)
A = 2 . 3 + 23 . 3 + ... + 299 . 3
A = 3 . (2 + 23 + ... + 299 ) chia hết cho 3
=> A chia hết cho 3 (ĐPCM)
để chả rõ ràng gì