Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(55-7.\left(x+3\right)=6\)
\(7.\left(x+3\right)=55-6\)
\(7.\left(x+3\right)=49\)
\(x+3=49:7\)
\(x+3=7\)
\(x=7-3\)
\(x=4\)
d) \(-14-x+\left(-15\right)=-10\)
\(-29-x=-10\)
\(x=-29+10\)
\(x=-19\)
-----------------------------
Số số hạng của A:
\(60-1+1=60\) (số)
Do \(60⋮6\) nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 6 số hạng như sau:
\(A=\left(2+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5\right)+2^7.\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}.\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(=2.63+2^7.63+...+2^{55}.63\)
\(=63.\left(2+2^7+...+2^{55}\right)\)
\(=21.3.\left(2+2^7+...+2^{55}\right)⋮21\)
Vậy \(A⋮21\)
55-7(x+3)=6
7(x+3)=55-6=49
(x+3)=49:7=7
x=7-3=4
(-14)-x + (-15)=-10
(-14)-x=-10-15=-25
x =-14-25=-39
A chia hết 31 chứ
\(a)3784+23-3785-15\)
\(= \left(3784-3785\right)+\left(23-15\right)\)
\(=-1+8=7\)
\(b)21+22+23+24-11-12-13-14\)
\(=\left(21-11\right)+\left(22-12\right)+\left(23-13\right)+\left(24-14\right)\)
\(=10+10+10+10=40\)
Bài 1: 100 - 94 + 90 - 84 + 80 - 74 + 70 - 64 + 60 - 50 =34
Bài 2: 78 . 31 + 78 . 24 + 78 . 17 + 22 . 72= 7200
Bài 3: 2 . 450 . 25 . 8 =180000
Bài 1: 100 - 94 + 90 - 84 + 80 - 74 + 70 - 64 + 60 - 50
=6+6+6+6+6=6x5=30
Bài 2: 78 . 31 + 78 . 24 + 78 . 17 + 22 . 72
=78x(31+24+17+22)
=...
Bài 3: 2 . 450 . 25 . 8 =450x200=900000
Lời giải:
$22+23-25+27-29+31-33$
$=22+(23-25)+(27-29)+(31-33)$
$=22+(-2)+(-2)+(-2)=22+(-2).3=22-6=16$
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(=6\left(1+2^2+...+2^{98}\right)⋮6\)
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3A=1-\frac{2}{3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(4A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt \(B=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3B=3+1+...+\frac{3}{3^{98}}\)
\(2B=3-\frac{1}{3^{99}}\)
\(B=\frac{3}{2}-\frac{1}{3^{99}.2}\)
Thay B vào 4A ta có:
\(4A=\frac{3}{2}-\frac{1}{3^{99}.2}\)
\(A=\frac{3}{2.4}-\frac{1}{3^{99}.2.4}\)
\(A=\frac{3}{8}-\frac{1}{3^{99}.8}\)
Vì \(\frac{3}{8}>\frac{3}{16}\)
\(\Rightarrow\frac{3}{8}-\frac{1}{3^{99}.8}< \frac{3}{16}\)
Vậy \(A< \frac{3}{16}\)
Ta có:
A = 2 + 22 + 23 + 24 + ... + 299 + 2100
A = (2 + 22 ) + (23 + 24 ) + ... + (299 + 2100 )
A = 2 . (1 + 2) + 23 . (1 + 2) + ... + 299 . (1 + 2)
A = 2 . 3 + 23 . 3 + ... + 299 . 3
A = 3 . (2 + 23 + ... + 299 ) chia hết cho 3
=> A chia hết cho 3 (ĐPCM)
để chả rõ ràng gì