Cho 1 hình chóp tứ giác đều có độ dài cạnh đáy bằng 8cm và độ dài trung đoạn bằng 10cm . Tính diện tích xung quanh của hình chóp tứ giác đều đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
a, Gọi \(O=BD\cap AC\)
K là trung điểm của CD
\(\Rightarrow OK=\dfrac{1}{2}AD=\dfrac{1}{2}CD=5\)
b, \(S_{xq}=\left(AB+BC\right).SK\)
\(=\left(10+10\right).13\)
\(=260\left(cm^2\right)\)
c, \(V_{S_{ABCD}}=\dfrac{1}{3}.SO.SB.SC\)
\(=\dfrac{1}{3}.12.10.10\)
\(=400\left(cm^3\right)\)
-Chúc bạn học tốt-
Sxq=16*4*17/2=544cm2
Stp=544+16^2=800cm2
V=1/3*16^2*15=1280cm3
Nữa chu vi đáy của hình chóp đều:
\(16\cdot4:2=32\left(cm\right)\)
Diện tích xung quanh của hình chóp đều:
\(S_{xq}=32\cdot17=544\left(cm^2\right)\)
Diện tích mặt đáy của hình chóp đều:
\(S_đ=16^2=256\left(cm^2\right)\)
Diện tích toàn phần của hình chóp đều:
\(S_{tp}=S_đ+S_{xq}=544+256=800\left(cm^2\right)\)
Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot256\cdot15=1280\left(cm^3\right)\)
Nữa chu vi đáy của hình chóp đều:
\(8\cdot4:2=16\left(cm\right)\)
Diện tích xung quanh của hình chóp đều:
\(S_{xq}=16\cdot5=80\left(cm^2\right)\)
Diện tích đáy của hình chóp đều:
\(S_đ=8^2=64\left(cm^2\right)\)
Diện tích toàn phần của hình chóp đều:
\(S_{tp}=S_đ+S_{xq}=64+80=144\left(cm^2\right)\)
10: Chu vi đáy là 30*3=90(cm)
Diện tích xung quanh là \(90\cdot20=1800\left(cm^2\right)\)
=>Không có câu nào đúng
11;
\(V_{chóp}=\dfrac{1}{3}\cdot S_{đáy}\cdot h\)
=>\(\dfrac{1}{3}\cdot12\cdot S_{đáy}=100\)
=>\(S_{đáy}=25\left(cm^2\right)\)
Độ dài cạnh là \(\sqrt{25}=5\left(cm\right)\)
=>Chọn C
Để tính diện tích xung quanh của túi quà, ta sử dụng công thức:
Diện tích xung quanh = số cạnh đáy * độ dài cạnh đáy * độ dài trung đoạn
Trong trường hợp này, số cạnh đáy là 4, độ dài cạnh đáy là 12 cm, và độ dài trung đoạn là 8 cm. Thay vào công thức, ta có:
Diện tích xung quanh = 4 * 12 cm * 8 cm = 384 cm\(^2\)
Vậy diện tích xung quanh của túi quà là 384 cm\(^2\)
Chu vi đáy là:
8*4=32(cm)
Diện tích xung quanh là:
\(32\cdot10=320\left(cm^2\right)\)