Tìm Max
C = -3/x - 4/ + 8 - 3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu không có thêm điều kiện gì về x thì $C$ không có giá trị max bạn nhé.
`C=-2x^2+x+1`
`C=-2(x^2-x/2)+1`
`C=-2(x^2-2*x*1/4+1/16)+1+1/8`
`C=-2(x-1/4)^2+9/8<=9/8`
Dấu "=" `<=>x=1/4.`
Ta có: \(C=-2x^2+x+1\)
\(=-2\left(x^2-2\cdot x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{9}{16}\right)\)
\(=-2\left(x-\dfrac{1}{4}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
a)
\(|3x+1|=4\)
\(\Rightarrow\orbr{\begin{cases}3x+1=4\\3x+1=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=4-1\\3x=-4-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=3\\3x=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\div3\\x=-5\div3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1,6667\end{cases}}\)
Vậy x = 1
\(\left(3x+4\right)^3=\left(9x-8\right)\left(3x^2-8\right)\)
\(27x^3+108x^2+144x+64=27x^3-72x-24x^2+64\)
\(27x^3-27x^3+108x^2+24x^2+144x+72x=64-64=0\)
\(132x^2+216x=0\)
\(x\left(132x+216\right)=0\)
\(\Rightarrow x=\hept{\begin{cases}0\\\frac{216}{132}=\frac{18}{11}\end{cases}}\)
`(x^2-2)(x+4)-4x(x-3)=-8+3x`
`<=>x^3+4x^2-2x-8-4x^2+12x-3x+8=0`
`<=>x^3+7x=0`
`<=>x(x^2+7)=0`
Vì `x^2+7>=7>0`
`<=>x=0`
\(\left(x^2-2\right)\cdot\left(x+4\right)-4x\left(x-3\right)=-8+3x\)
$\to$ \(x^3+4x^2-2x-8-4x^2+12x+8-3x=0\)
$\to$ \(x^3+7x=0\)
$\to x.(x^2+7)=0$
$\to x=0$ ( Do $x^2+7>0$ )
Vậy $x=0$
`(x-2)(x+4)-4x(x-3)=-8+3x`
`<=>x^2+2x-8-4x^2+12x-3x+8=0`
`<=>11x-3x^2=0`
`<=>x(11-3x)=0`
`th1:x=0`
`th2:11-3x=0`
`<=>11=3x`
`<=>x=11/3`
Vậy `S={0,11/3}`
\(\left(x-2\right)\left(x+4\right)-4x\left(x-3\right)=-8+3x\)
\(< =>x^2+4x-2x-8-4x^2+12x+8-3x=0\)
\(< =>-3x^2+11x=0\)
\(< =>-3x\left(x-\dfrac{11}{3}\right)=0=>x=\dfrac{11}{3}\)
b) \(\Leftrightarrow3x^3+12x-2x^2-8=0\\ \Leftrightarrow\left(3x^3-2x^2\right)+\left(12x-8\right)=0\\ \Leftrightarrow x^2\left(3x-2\right)+4\left(3x-2\right)=0\\ \Leftrightarrow\left(x^2+4\right)\left(3x-2\right)=0\)
Vì \(x^2+4>0\Rightarrow3x-2=0\Rightarrow x=\dfrac{2}{3}\)
c) \(x^2+5x=0\\ \Leftrightarrow x\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
d) \(\Leftrightarrow x^3-27+x\left(4-x^2\right)=36\\ \Leftrightarrow x^3+4x-x^3=63\\ \Leftrightarrow4x=63\\ \Leftrightarrow x=\dfrac{63}{4}\)
b) 3x(x\(^3\) +12x-2x\(^2\)-8=0
3x(x\(^2\)+4)-2(x\(^2\)+4)=0
(x\(^2\)+4)(3x-2)=0
\(\Leftrightarrow\left[{}\begin{matrix}X^2+4=0\\3X-2=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x\in Z\\X=\dfrac{2}{3}\end{matrix}\right.\)
a) x\(^2\)+5x=0
x(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
c)(x-3)(x\(^2\)+3x+9)+x(x+2)(2-x)=36
x\(^3\)-27+x(x+2)(2-x)=36
4x-27=36
4x=36+27
4x=63
x=\(\dfrac{63}{4}\)
\(a,5\left(3x+5\right)-4\left(2x-3\right)=5x+8\left(2x+12\right)+1\)
\(\Rightarrow5\left(3x+5\right)-4\left(2x-3\right)-5x-8\left(2x+12\right)-1=0\)
\(\Rightarrow15x+25-8x+12-5x-16x-96-1=0\)
\(\Rightarrow-14x-60=0\)
\(\Rightarrow-14x=60\) \(\Rightarrow x=-\frac{60}{14}=\frac{-30}{7}\)
\(b,\left(2x+3\right)\left(x-4\right)-\left(3x-5\right)\left(x-4\right)=\left(5-x\right)\left(x-2\right)\)
\(\Rightarrow2x^2+3x-8x-12-3x^2+5x+12x-20=5x-x^2-10+2x\)
\(\Rightarrow-x^2+12x-32=7x-x^2-10\)
\(\Rightarrow-x^2+12x-32-7x+x^2+10=0\)
\(\Rightarrow5x-22=0\)
\(\Rightarrow5x=22\Rightarrow x=\frac{22}{5}\)
a) 5(3x+5)-4(2x-3) = 5x+8(2x+12)+1
15x + 25 - 8x + 12 = 5x + 16x + 96 + 1
15x - 8x - 5x - 16x = 96 + 1 - 25 - 12
-14x = 60
x = \(\frac{60}{-14}\)
x = \(-\frac{30}{7}\)
b) (2x+3)(x-4)-(3x-5)(x-4) = (5-x).(x-2)
(x - 4)(2x + 3 - 3x +5) = 5x - 10 - x2 + 2x
(x - 4)[(2x - 3x) + (3 + 5)] = 5x - 10 - x2 + 2x
(x - 4)(-x + 8) = 5x - 10 - x2 + 2x
-x2 + 8x + 4x - 32 = 5x - 10 - x2 + 2x
(-x2 + x2) + (8x + 4x - 5x - 2x) = -10 + 32
5x = 22
x = \(\frac{22}{5}\)