cho tam giác ABC vuông tại A có BC = 8 cm, D là trung điểm cạnh BC.
a) Tính độ dài cạnh AC
b)Lấy E sao cho D là trung điểm AE. Tính góc BEC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(AC=\sqrt{BC^2-AB^2}=\sqrt{25^2-20^2}=15\)
A>C>B
b/ Ta có : góc BAE + góc EAC = 90 độ ( góc A là góc vuông)
xét tam giác vuông ABK và tam giác vuông EBK:
AK = KE, BK là cạnh chung
=> 2 tam giác bằng nhau ( 2 cạnh góc vuông)
=> BA = BE ( 2 cạnh tương ứng )
=> tam giac BAE cân tạ B.
c/ xét tam giác ABC và tam giác EBC có:
AB = BE (cm câu b)
góc ABK = góc KBE ( đường phân giác trong tam giác cân BAE)
BC là cạnh chung
=> 2 tam giác bằng nhau.
=> tam giác BEC vuông tại E.
d/góc BKE = 90 độ (1)
tam giác MKB cân tại M ( tính chất đường trung tuyến trong tam giấc vuông)
=> góc MKB = góc ABC = 90 - KAB (2)
góc QKE = 90 - góc QEK mà góc QEK = góc CAK ( tam giác AKC = tam giác EKC) = 90 - góc KAB => góc QKE = góc KAB
mặt khác tam giác MAK cân tại M( tính chất đương trung tuyến trong tam giác vuông) => góc BAK = góc MKA (3)
góc MKB + góc MKA = 90 độ (4)
từ (1), (2), (3) và (4) suy ra góc MKA + góc BKE + góc EKQ = 180 độ
vậy M, K, Q thẳng hàng
Câu d nè bn.
d, ✳️ Xét ∆ ABC vuông tại A có góc ACB= 30° (gt)
➡️Góc ABC = 60°
mà ∆ BFC cân tại B (BI là đg phân giác đồng thời là đg cao)
➡️∆ BFC đều
➡️BC = FC = FB
✳️ Xét ∆ ABC vuông tại A có góc ACB = 30° (gt)
➡️AB = 1/2 BC (t/c)
➡️BC = 2 AB
Theo Pitago ta có:
BC 2 = AB 2 + AC 2
➡️(2 AB) 2 = AB 2 + AC 2
➡️4 AB 2 - AB 2 = AC 2
➡️3 AB 2 = AC 2
➡️3 AB 2 = 25
➡️AB 2 = 25 ÷ 3 = 25/3
Vậy ta có: BC 2 = 25/3 + 25 = 100/3
➡️BC = √100/3
mà BC = FC (cmt)
➡️FC = √100/3
Vậy đó, hok tốt nhé
a: AC=4cm
b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
Do đó: ΔBAE=ΔBDE
Suy ra: \(\widehat{ABE}=\widehat{DBE}\)
hay BE là tia phân giác của góc ABC
c: Ta có: ΔBAE=ΔBDE
nên EA=ED
mà ED<EC
nên EA<EC
d: Ta có: BA=BD
nên B nằm trên đường trung trực của AD(1)
Ta có: EA=ED
nên E nằm trên đường trung trực của AD(2)
Từ (1) và (2) suy ra BE là đường trung trực của AD
a) Ta có :\(BC^2=AB^2+AC^2=6^2+8^2=10^2\Leftrightarrow BC=10\)
b)
a) ta có: A + ABC + C =180° (đ/l)
=> 90° + ABC + 40° =180°
=> ABC = 180° -( 40°+ 90°)
=> ABC = 50°
Vì BD là tia phân giác góc ABC => ABD = CBD = 50° : 2 = 25°
Vậy ABD = 25°
b) xét tam giác BAD và tam giác BED có:
AB = BE ( GT )
BD chung
ABD = CBD ( GT )
=> tam giác BAD = tam giác BED ( c.g.c )
Ta có A = BED = 90° ( 2 góc t.ư)
=> DE vuông góc BC ( vì có 1 góc= 90° )
c) xét tam giác ABC và tam giác EBF có:
AB = BE ( GT )
B chung
A = E = 90°
=> tam giác ABC = tam giác EBF ( g.c.g )
d) ta có tam giác ABC = tam giác EBF ( theo c )
=> BC = BF ( 2 cạnh tương ứng)
Xét tam giác BKC và tam giác BKF có:
BC = BF ( GT )
BK chung
FBK = KBC ( GT )
=> tam giác BKC = tam giác BKF (c.g.c)
=> BKC = BKF ( 2 góc t.ư)
=> BKC + BKF = 180° ( 2 góc kề bù )
=> BKC = BKF = 180° : 2 = 90° = KFC
Vậy 3 điểm K,F,C thẳng hàng
Bn vẽ hình hộ mk nhé!
a) Áp dụng tc tổng 3 góc của 1 tg ta có:
góc BAC + ACB + ABC = 180 độ
=>90 + 40 + ABC = 180
=> ABC = 50 độ
mà góc ABD = CBD = ABC : 2 = 50 : 2 = 25 độ ( BD là tia pg của ABC )
a: Đề thiếu rồi bạn
b: Xét tứ giác ABEC có
D là trung điểm chung của AE và BC
=>ABEC là hình bình hành
Hình bình hành ABEC có \(\widehat{BAC}=90^0\)
nên ABEC là hình chữ nhật
=>\(\widehat{BEC}=90^0\)