cho tam giác nhọn ABC vẽ phía ngoài tam giác ABC cắt tam giác đều ABD và tam giác ACE gọi M là giao điểm của DC và BE chứng minh rêng
a) tgiac ABE=tgiac ADC
b) góc BMC=120°
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
góc BAE=góc BAC+góc CAE=góc BAC+60 độ
góc CAD=góc CAB+góc BAD=góc BAC+60 độ
=>góc BAE=góc CAD
Xét ΔABE và ΔADC có
AB=AD
góc BAE=góc DAC
AE=AC
=>ΔABE=ΔADC
b: ΔABE=ΔADC
=>góc ABE=góc ADC
=>góc ABM=góc ADM
Xét tứ giác ADBM có
góc ABM=góc ADM
=>ADBM là tứ giác nội tiếp
=>góc DMB=góc DAB=60 độ
góc DMB+góc BMC=180 độ(kề bù)
=>góc BMC=180-60=120 độ
Xét tam giác ADC và tam giác AEB có:
AD = AB(giả thiết)
\(\widehat{DAC}=\widehat{BAE}\)(\(=60^0+\widehat{BAC}\))
AC = AE( giả thiết)
\(\Rightarrow\)tam giác ADC = tam giác ABE (c-g-c)
\(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 góc tương ứng)
Xét tam giác ADI và tam giác BIM có:
\(\widehat{ADI}+\widehat{AIM}+\widehat{DAI}=\widehat{IBM}+\widehat{BIM}+\widehat{IMB}=180^0\)(theo định lí tổng 3 góc của tam giác)
Mà \(\widehat{ADI}=\widehat{IBM}\)(chứng minh trên)
\(\widehat{AID}=\widehat{BIM}\)(2 góc đối đỉnh)
\(\Rightarrow\widehat{DAI}=\widehat{IMB}\)
Mà \(\widehat{DAI}=60^0\)
\(\Rightarrow\widehat{IMB}=60^0\)
Ta có: \(\widehat{IMB}+\widehat{BMC}=180^0\)(2 góc kề bù)
\(\Rightarrow60^0+\widehat{BMC}=180^0\)
\(\Rightarrow\widehat{BMC}=180^0-60^0=120^0\)
Vậy \(\widehat{BMC}=120^0\)(ĐPCM)
ta có DAC=60+BAC b, BMC=MCE+MEC
BAE=60+BAC MCE+MEC=ACE+MCA+MEC=BMC
=>DAC=BAC MÀ ACE=AEB
SAU ĐÓ XÉT TAM GIÁC => BMC = ACE+AEB+MEC=60+60=120
Chủ thớt chuẩn bị dĩa với dụng cụ đi :v
a) Xét \(\Delta ABD\) đều
=> \(\widehat{DAB}=\widehat{ABD}=\widehat{BDA}=60^0\)
Xét \(\Delta ACE\)
=> \(\widehat{CAE}=\widehat{ECA}=\widehat{AEC}=60^0\)
Có : \(\widehat{BAC}+\widehat{DAB}=\widehat{BAC}+\widehat{CAE}\) \(\left(\widehat{CAE}=\widehat{DAB}=60^0\right)\)
\(\Rightarrow\widehat{DAC}=\widehat{EAB}\)
Xét \(\Delta ACD\) và \(\Delta AEB\) có :
\(\widehat{DAC}=\widehat{EAB}\)
\(AC=AE\) (\(\Delta ACE\) đều)
\(AB=AD\) (\(\Delta ABD\) đều)
=> \(\Delta ACD\)= \(\Delta AEB\) (cạnh - góc - cạnh)
b) Gọi giao điểm của AC và BE là W (chỗ này thì thích gì gọi đó :))
Ta có :
\(\Delta ACD\) = \(\Delta AEB\)
=> \(\widehat{AEB}=\widehat{ACD}\)
Lại có : \(\widehat{AWE}=\widehat{MWC}\)
Theo tổng 3 góc trong tam giác có :
\(\widehat{EAW}+\widehat{AEW}+\widehat{AWE\:}=60^0+\widehat{AEW}+\widehat{AWE}\) (tam giác AEW)
\(\widehat{CMW}+\widehat{MCW}+\widehat{MWC\: }=60^0+\widehat{MCW}+\widehat{MWC}\) (tam giác MWC)
=>
Làm tiếp :
=> \(\widehat{EAW}=\widehat{CMW}=60^0\)
Mà \(\widehat{CMW}+\widehat{CMB}=180^0\)
=> \(\widehat{CMB}=120^0\)