K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2023

(a(b-c)^2 + b(c-a)^2 + c(a-b)^2) - (a^3 + b^3 + c^3) + 4abc

= a(b^2 - 2bc + c^2) + b(c^2 - 2ac + a^2) + c(a^2 - 2ab + b^2) - (a^3 + b^3 + c^3) + 4abc

= ab^2 - 2abc + ac^2 + bc^2 - 2abc + ba^2 + ca^2 - 2abc + cb^2 - a^3 - b^3 - c^3 + 4abc

= ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2 - a^3 - b^3 - c^3 + 4abc - 6abc

= a(b^2 + c^2 + a^2) + b(a^2 + c^2 + b^2) + c(a^2 + b^2 + c^2) - (a^3 + b^3 + c^3) - 2abc

= a^3 + b^3 + c^3 + a^2b + ab^2 + a^2c + ac^2 + b^2c + bc^2 - a^3 - b^3 - c^3 - 2abc

= a^2b + ab^2 + a^2c + ac^2 + b^2c + bc^2 - 2abc

= ab(a + b) + ac(a + c) + bc(b + c) - 2abc

= (a + b)(ab - ac + bc) - 2abc

Vậy, ta có thể viết bài toán dưới dạng nhân tử là: (a + b)(ab - ac + bc) - 2abc.

20 tháng 11 2018

Mình không biết

20 tháng 11 2018

ko bt thì  ko nói nha mình đang cần gấp lém xin đừng trêu

12 tháng 5 2020

tk mình đi mình giải cho 

30 tháng 7 2017

b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)

\(=a^3\left(b-c\right)-b^3\left[\left(b-c\right)+\left(a-b\right)\right]+c^3\left(a-b\right)\)

\(=a^3\left(b-c\right)-b^3\left(b-c\right)-b^3\left(a-b\right)+c^3\left(a-b\right)\)

\(=\left(b-c\right)\left(a^3-b^3\right)- \left(a-b\right)\left(b^3-c^3\right)\)

\(=\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a^2+ab+b^2-b^2-bc-c^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a^2-c^2+ab-bc\right)\)

\(=\left(a-b\right)\left(b-c\right)\left[\left(a-c\right)\left(a+c\right)+b\left(a-c\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)