cho tam giác ABC vuông tại A biết B=50 độ BC=8CM .Tính độ dài cạnh AC(làm tròn đến số thập phân)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan25^0\)
\(\Leftrightarrow AC=8\cdot\tan25^0\)
hay \(AC\simeq3,730\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=8^2+3.73^2=77,9129\)
hay \(BC\simeq8,827\left(cm\right)\)
Ta có: ΔABC vuông tại B
nên \(\widehat{A}+\widehat{C}=90^0\)
hay \(\widehat{C}=23^0\)
Xét ΔABC vuông tại B có
\(AC=\dfrac{AB}{\cos67^0}\)
\(\Leftrightarrow AC\simeq20,47\left(cm\right)\)
\(\Leftrightarrow BC\simeq18,84\left(cm\right)\)
a:
ΔABC vuông tại A
=>BC^2=AB^2+AC^2
=>\(BC^2=25+64=89\)
=>\(BC=\sqrt{89}\)
Xét ΔABC vuông tại A có \(tanB=\dfrac{AC}{AB}=\dfrac{8}{5}\)
=>\(\widehat{B}\simeq58^0\)
=>\(\widehat{C}=32^0\)
b: Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
ΔAHB vuông tại H có HM vuông góc AB
nên AM*AB=AH^2; BM*BA=BH^2; AM*MB=HM^2
ΔAHC vuông tại H có HN làđường cao
nên AN*AC=AH^2;CN*CA=CH^2; NA*NC=NH^2
AM*MB+NA*NC
=HM^2+HN^2
=MN^2
c: AB^2/AC^2
\(=\dfrac{BH\cdot CB}{CH\cdot CB}=\dfrac{BH}{CH}\)
Lời giải:
Ta có:
$\sin B = \frac{AC}{BC}\Rightarrow AC=BC.\sin B$
$\Rightarrow AC=8\sin 50^0=6,1$ (cm)