Cho tam giác ABC nhọn biết AB<AC . Các đường cao BE , CF cắt nhau tại H . Gọi M là trung điểm của BC . Trên tia đối của tia MH lấy K sao cho MH=MK .
a) cm tứ giác BHCK là hbh
b) cm BK vuông góc với AB , CK vuông góc với AC
c) cm tam giác MEF là tam giác cân
d) vẽ CQ vuông góc với BK tại Q . Chứng minh EF vuông góc với EQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Tự vẽ hình nha !
Xét △AHB vuông tại H, ta có:
BH2 = AB2 - AH2 (Py-ta-go)
BH2 = 132 - 122 = 25
=> BH = √25 =5 (cm)
Xét △AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (Py-ta-go)
AC2 = 122 + 162 = 400
=> AC = √400 = 20 (cm)
Ta có: BC = BH + HC = 5 + 16 = 21 (cm)
Chu vi tam giác ABC:
AB + AC + BC = 13 + 20 + 21 = 54 (cm)
Vậy ....................
Tham khảo:
Xét tam giác BFC và tam giác BEC có :
BC chung
FC = BE
\(\widehat {BFC} = \widehat {BEC} = {90^o}\)
( cạnh huyền – cạnh góc vuông)
\( \Rightarrow \widehat C = \widehat B\) ( 2 góc tương ứng ) (1)
Xét tam giác CFA và tam giác ADC ta có :
CF = AD
AC chung
\(\widehat {ADC} = \widehat {AFC} = {90^o}\)
(cạnh huyền – cạnh góc vuông)
\( \Rightarrow \widehat C = \widehat A\)(2 góc tương ứng ) (2)
Từ (1) và (2) \( \Rightarrow \widehat C = \widehat A = \widehat B\) \( \Rightarrow \)Tam giác ABC là tam giác đều do có 3 góc bằng nhau
Áp dụng định lý Pitago, ta có: \(AC^2=AH^2+HC^2\)
\(\Rightarrow20^2=12^2+HC^2\)
\(\Rightarrow HC^2=20^2-12^2\)
\(\Rightarrow HC^2=400-144=256\)
\(\Rightarrow HC=16\left(cm\right)\)
Áp dụng định lý Pitago, ta có: \(AB^2=BH^2+AH^2\)
\(\Rightarrow AB^2=5^2+12^2\)
\(\Rightarrow AB^2=25+144=169\)
\(\Rightarrow AB=13\left(cm\right)\)
Vậy CV tam giác ABC là
\(20+5+16+13=54\left(cm\right)\)
Ta có:\(AC^2=HC^2+AH^2\)(Định lý pytago)
\(\Rightarrow AH^2=AC^2-HC^2=4^2-2^2=16-4=12\)
\(\Rightarrow AH=\sqrt{12}\approx3\)
Độ dài BC là :3+2=5
Chu vi của tam giác ABC la:\(4+5+5\approx14\)