K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

a: ΔABC vuông tại A

mà AM là trung tuyến

nên MA=MB=MC=BC/2

Xét ΔMAB có MA=MB và \(\widehat{MBA}=60^0\)

nên ΔMAB đều

b: ΔBAM đều

mà BH là đường cao

nên H là trung điểm của AM

Xét ΔHNM vuông tại H và ΔHBA vuông tại H có

HM=HA

\(\widehat{HMN}=\widehat{HAB}\)(MN//AB)

Do đó: ΔHNM=ΔHBA

=>HN=HB

=>H là trung điểm của BN

Xét tứ giác ABMN có

H là trung điểm chung của AM và BN

BM=BA

Do đó: ABMN là hình thoi

c: ABMN là hình thoi

=>\(\widehat{NMB}=180^0-\widehat{MBA}=180^0-60^0=120^0\)

Xét ΔMNB có \(cosNMB=\dfrac{MN^2+MB^2-BN^2}{2\cdot MN\cdot MB}\)

\(\Leftrightarrow\dfrac{AB^2+AB^2-BN^2}{2\cdot AB\cdot AB}=-\dfrac{1}{2}\)

=>\(2AB^2-BN^2=-AB^2\)

=>\(BN^2=3AB^2\)

Xét ΔMAC có \(cosAMC=\dfrac{MA^2+MC^2-AC^2}{2\cdot MA\cdot MC}\)

=>\(\dfrac{AB^2+AB^2-AC^2}{2\cdot AB\cdot AB}=cos120=\dfrac{-1}{2}\)

=>\(2AB^2-AC^2=-AB^2\)

=>\(AC^2=3AB^2\)

=>\(AC^2=BN^2\)

=>AC=BN