Cho tam giác ABC vuông tại A có tan B=3/4,AB=4cm.Tính độ dài các cạnh AC,BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm mẫu cho bạn câu a) nhé
a) Theo định lí Pytago ta có :
BC2 = AB2 + AC2
152 = AB2 + AC2
AB : AC = 3:4
=> \(\frac{AB}{3}=\frac{AC}{4}\)=> \(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}\)và AB2 + AC2 = 152
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{AB^2}{3^2}=\frac{AC^2}{4^2}=\frac{AB^2+AC^2}{3^2+4^2}=\frac{15^2}{25}=\frac{225}{25}=9\)
\(\frac{AB^2}{3^2}=9\Rightarrow AB^2=81\Rightarrow AB=\sqrt{81}=9cm\)
\(\frac{AC^2}{4^2}=9\Rightarrow AC^2=144\Rightarrow AC=\sqrt{144}=12cm\)
Ý b) tương tự nhé
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
AB=3/5BC, ĐƯA VỀ DẠNG TOÁN TỔNG TỈ ĐỂ TÌM HAI CẠNH GÓC VUÔNG RỒI TÍNH S
Lời giải:
Coi độ dài cạnh AB là 3 phần thì độ dài cạnh AC là 4 phần, độ dài cạnh BC là 5 phần.
Tổng số phần bằng nhau: $3+4+5=12$ (phần)
Độ dài cạnh AB: $144:12\times 3=36$ (cm)
Độ dài cạnh AC: $144:12\times 4=48$ (cm)
Diện tích tam giác $ABC$: $36\times 48:2=864$ (cm2)
1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có
góc C chung
=>ΔABC đồng dạng với ΔIEC
b:
IC=BC/2=15cm
ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC
=>18/IE=30/EC=24/15=8/5
=>IE=11,25cm; EC=18,75cm
Có \(tanB=\frac{AC}{AB}=\frac{3}{4}\Rightarrow AC=3cm\)
Áp dụng ĐL Pytago vào tam giác ABC vuông tại A ta có :
\(BC=\sqrt{AB^2+AC^2}=\sqrt{25}=5\left(cm\right)\)