Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm tất cả số nguyên thỏa mãn
a + y + z > 11 và 8x + 9y + 10z = 100
Do các số x,y,zx,y,z nguyên dương nên :
a+y+z>11 suy ra a+y+z≥12a+y+z>11 suy ra a+y+z≥12
Có
100=8(a+y+z)+(y+2z)≥96+(y+2z)100=8(a+y+z)+(y+2z)≥96+(y+2z)
Suy ra
4≥y+2z≥34≥y+2z≥3
Tức là
y+2z∈{3;4}y+2z∈{3;4}
Theo đề bài thì
8a+9y+10z=1008a+9y+10z=100
Số yy là số chẵn .Tức là y+2zy+2z cũng là số chẵn .Suy ra
y+2z=4y+2z=4
Hay
{y=2z=1{y=2z=1
Thế ngược lại vào
tìm được a=9.Vậy (a,y,z)=(9,2,1) thỏa điều kiện đề bài .
a + y + z > 11 và 8x + 9y + 10z = 100
Do các số x,y,zx,y,z nguyên dương nên :
a+y+z>11 suy ra a+y+z≥12a+y+z>11 suy ra a+y+z≥12
Có
100=8(a+y+z)+(y+2z)≥96+(y+2z)100=8(a+y+z)+(y+2z)≥96+(y+2z)
Suy ra
4≥y+2z≥34≥y+2z≥3
Tức là
y+2z∈{3;4}y+2z∈{3;4}
Theo đề bài thì
8a+9y+10z=1008a+9y+10z=100
Số yy là số chẵn .
Tức là y+2zy+2z cũng là số chẵn .
Suy ra
y+2z=4y+2z=4
Hay
{y=2z=1{y=2z=1
Thế ngược lại vào
8a+9y+10z=1008a+9y+10z=100
tìm được a=9.
Vậy (a,y,z)=(9,2,1) thỏa điều kiện đề bài .