Bài 1: Rút gọn bt
\(\dfrac{6}{\sqrt{2}-\sqrt{3}+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
Ta có: \(\dfrac{1}{2+\sqrt{3}}+\sqrt{3}\)
\(=2-\sqrt{3}+\sqrt{3}\)
=2
a: \(=\dfrac{x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{-5\sqrt{x}-5+x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-3\sqrt{x}-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
b: khi x=6-2căn 5 thì \(P=\dfrac{6-2\sqrt{5}-3\sqrt{5}+3-5}{\left(\sqrt{5}-3\right)\left(\sqrt{5}-4\right)\cdot\sqrt{5}}\)
\(=\dfrac{-5\sqrt{5}+4}{\sqrt{5}\left(\sqrt{5}-3\right)\left(\sqrt{5}-4\right)}\)
b: Ta có: \(\dfrac{4}{\sqrt{3}+1}+\dfrac{2}{\sqrt{3}-1}-\dfrac{6}{3-\sqrt{3}}\)
\(=2\sqrt{3}-2+\sqrt{3}+1-3-\sqrt{3}\)
\(=2\sqrt{3}-4\)
Ta có: \(\dfrac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}}{\sqrt{3}-1}\)
\(=\sqrt{2}\)
Ta có: \(\dfrac{2\sqrt{3}}{\sqrt{3}+\sqrt{2}}+\sqrt{24}\)
\(=2\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)+2\sqrt{6}\)
\(=6-2\sqrt{6}+2\sqrt{6}\)
=6
1: Ta có: \(A=\left(\dfrac{\sqrt{x}}{2-\sqrt{x}}+\dfrac{\sqrt{x}}{2+\sqrt{x}}\right)-\dfrac{\sqrt{x}+6}{4-x}\)
\(=\dfrac{2\sqrt{x}+x+2\sqrt{x}-x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}-\dfrac{\sqrt{x}+6}{\left(2-\sqrt{x}\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3\sqrt{x}-6}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-3}{\sqrt{x}+2}\)
\(a,\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{\sqrt{3}}{2-\sqrt{6}}+\dfrac{\sqrt{3}}{2+\sqrt{6}}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{\sqrt{3}\left(2+\sqrt{6}\right)+\sqrt{3}\left(2-\sqrt{6}\right)}{\left(2-\sqrt{6}\right)\left(2+\sqrt{2}\right)}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{6}}\left(\dfrac{2\sqrt{3}+3\sqrt{2}+2\sqrt{3}-3\sqrt{2}}{4-6}\right)-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{2+\sqrt{6}}-\dfrac{\sqrt{2}-\sqrt{3}}{2\sqrt{2}.\sqrt{3}}.\dfrac{4\sqrt{3}}{-2}-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}+\dfrac{\sqrt{2}-\sqrt{3}-1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1+\left(\sqrt{2}-\sqrt{3}-1\right)\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}-1+2+\sqrt{6}-\sqrt{6}-3-\sqrt{2}-\sqrt{3}}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=\dfrac{-2}{\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)}\)
\(=-\dfrac{\sqrt{2}}{\sqrt{2}+\sqrt{3}}\)
\(\dfrac{6}{\sqrt{2}-\sqrt{3}+3}\)
\(=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{\left(\sqrt{2}-\sqrt{3}\right)^2-9}\)
\(=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-4-2\sqrt{6}}\)
\(=\dfrac{-3\left(\sqrt{2}-\sqrt{3}-3\right)}{2+\sqrt{6}}=\dfrac{-3\left(\sqrt{6}-2\right)\left(\sqrt{2}-\sqrt{3}-3\right)}{2}\)