\(\dfrac{6}{\sqrt{2}-\sqrt{3}+3}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2023

\(\dfrac{6}{\sqrt{2}-\sqrt{3}+3}\)

\(=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{\left(\sqrt{2}-\sqrt{3}\right)^2-9}\)

\(=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-4-2\sqrt{6}}\)

\(=\dfrac{-3\left(\sqrt{2}-\sqrt{3}-3\right)}{2+\sqrt{6}}=\dfrac{-3\left(\sqrt{6}-2\right)\left(\sqrt{2}-\sqrt{3}-3\right)}{2}\)

 

4 tháng 9 2016

1. \(\sqrt{7+2\sqrt{10}}-\sqrt{7-2\sqrt{10}}=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}=2\sqrt{2}\)

2. \(\sqrt{12-6\sqrt{3}}+\sqrt{21-12\sqrt{3}}=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(2\sqrt{3}-3\right)^2}\\ =3-\sqrt{3}+2\sqrt{3}-3=\sqrt{3}\)

3. \(\sqrt{33-12\sqrt{6}}+\sqrt{15-6\sqrt{6}}=\sqrt{\left(2\sqrt{6}-3\right)^2}+\sqrt{\left(3+\sqrt{6}\right)^2}\\ =2\sqrt{6}-3+3+\sqrt{6}=3\sqrt{6}\)

4 tháng 9 2016

1.\(\sqrt{7+2\sqrt{10}}-\sqrt{7-2\sqrt{10}}=\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)

\(=\sqrt{5}+\sqrt{2}-\left(\sqrt{5}-\sqrt{2}\right)=2\sqrt{2}\)

2. \(\sqrt{12-6\sqrt{3}+\sqrt{21-12\sqrt{3}}}=\sqrt{12-6\sqrt{3}+\sqrt{\left(3-2\sqrt{3}\right)^2}}\)

\(=\sqrt{12-6\sqrt{3}+2\sqrt{3}-3}=\sqrt{9-4\sqrt{3}}\)

3. \(\sqrt{33-12\sqrt{6}}+\sqrt{15-6\sqrt{6}}=\sqrt{\left(2\sqrt{6}-3\right)^2}+\sqrt{\left(\sqrt{6}-3\right)^2}\)

\(=2\sqrt{6}-3+3-\sqrt{6}=\sqrt{6}\)

29 tháng 6 2017

\(A^2=\left(\sqrt{3-1}\right)^2\cdot\left(\sqrt{\frac{14-6\sqrt{3}}{5+\sqrt{3}}}\right)^2\)

\(A^2=2\cdot\frac{14-6\sqrt{3}}{5+\sqrt{3}}\)

\(A^2=2\cdot\frac{\left(14-6\sqrt{3}\right)\left(5-\sqrt{3}\right)}{\left(5+\sqrt{3}\right)\left(5-\sqrt{3}\right)}\)

\(A^2=2\cdot\frac{70-30\sqrt{3}-14\sqrt{3}+18}{22}\)

\(A^2=\frac{88-44\sqrt{3}}{11}\)

\(A=\sqrt{\frac{88-44\sqrt{3}}{11}}\)

21 tháng 6 2017

b) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) = \(1+\sqrt{2}\)

21 tháng 6 2017

a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\) = \(\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\) = \(\dfrac{\sqrt{2}}{2}\)

19 tháng 10 2018

1.

a, ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

b,

\(M=(\dfrac{\sqrt{x}}{\sqrt{x}-2}\times\dfrac{\sqrt{x}}{\sqrt{x}+2})\times\dfrac{x-4}{\sqrt{4x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\times\dfrac{x-4}{2\sqrt{x}}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2+\sqrt{x}-2\right)}{x-4}\times\dfrac{x-4}{2\sqrt{x}}\)

\(=(\sqrt{x}\times2\sqrt{x})\times\dfrac{1}{2\sqrt{x}}\)

\(=\sqrt{x}\)

c,

\(M>3\Leftrightarrow\sqrt{x}>3\Leftrightarrow x>9\)

25 tháng 10 2022

Bài 2: 

a: \(A=\dfrac{3+\sqrt{1-a^2}}{\sqrt{1+a}}:\dfrac{3+\sqrt{1-a^2}}{\sqrt{1-a^2}}=\sqrt{\dfrac{1-a^2}{1+a}}=\sqrt{1-a}\)

b: Để A=căn A thì A=1 hoặc A=0

=>A=1

=>1-a=1

=>a=0

c: Thay \(a=\dfrac{\sqrt{3}}{2+\sqrt{3}}=\sqrt{3}\left(2-\sqrt{3}\right)=2\sqrt{3}-3\) vào A, ta được:

\(A=\sqrt{1-2\sqrt{3}+3}=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)

24 tháng 11 2019

\(a,A=\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}\)

\(=\sqrt{\left(\sqrt{5}^2+2\sqrt{5}+2\sqrt{2}\cdot\sqrt{5}\right)+\sqrt{2}^2+2\sqrt{2}\cdot1+1^2}\)

\(=\sqrt{\sqrt{5}^2+2\cdot\sqrt{5}\left(\sqrt{2}+1\right)+\left(\sqrt{2}+1\right)^2}\)

\(=\sqrt{\left(\sqrt{5}+\sqrt{2}+1\right)^2}\)

\(=\sqrt{5}+\sqrt{2}+1\)

\(b,B=\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(=\left(\frac{3\cdot\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}{\sqrt{6}+1}+\frac{2\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}{\sqrt{6}-2}-\frac{4\left(3-\sqrt{6}\right)\left(3+\sqrt{6}\right)}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)

\(=\left[3\cdot\left(\sqrt{6}-1\right)+2\left(\sqrt{6}+2\right)-4\left(3+\sqrt{6}\right)\right]\left(\sqrt{6}+11\right)\)

\(=\left(\sqrt{6}+11\right)\left(\sqrt{6}-11\right)=-115\)

12 tháng 8 2018

\(A=\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)

\(=\frac{3\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{13\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}+\frac{6}{\sqrt{3}}\)

\(=6-3\sqrt{3}+4+\sqrt{3}+\frac{6}{\sqrt{3}}\)

\(=10-2\sqrt{3}+\frac{6}{\sqrt{3}}\)

\(=\frac{10\sqrt{3}-6+6\sqrt{3}}{\sqrt{3}}\)

\(=\frac{16\sqrt{3}-6}{\sqrt{3}}\)

13 tháng 7 2017

\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

28 tháng 7 2020

Bài 2 :

a) Sửa đề :

 \(A=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)

\(A=\sqrt{3}-1-\sqrt{3}\)

\(A=-1\)

b) \(B=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

\(B=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(B=\sqrt{2}+1-\sqrt{2}+1\)

\(B=2\)

c) \(C=\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

\(C=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(C=2-\sqrt{3}+2+\sqrt{3}\)

\(C=4\)

d) \(D=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

\(D=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(D=4+\sqrt{7}-\sqrt{7}\)

\(D=4\)

28 tháng 7 2020

Bài 1 :

a) Để \(\sqrt{\left(x-1\right)\left(x-3\right)}\) có nghĩa

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)

TH1 :\(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow x\ge3}\)

TH2 : \(\hept{\begin{cases}x-1\le0\\x-3\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\le3\end{cases}\Leftrightarrow}x\le1}\)

Vậy để biểu thức có nghĩa thì \(\orbr{\begin{cases}x\ge3\\x\le1\end{cases}}\)

b) Để \(\sqrt{\frac{1-x}{x+2}}\)có nghĩa

\(\Leftrightarrow\frac{1-x}{x+2}\ge0\)

TH1 : \(\hept{\begin{cases}1-x\ge0\\x+2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}\Leftrightarrow}-2\le x\le1}\)

TH2 : \(\hept{\begin{cases}1-x\le0\\x+2\le0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\le-2\end{cases}\Leftrightarrow x\in\varnothing}\)

Vậy để biểu thức có nghĩa thì \(-2\le x\le1\)