Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đơn giản các biểu thức sau ( giả sử các biểu thức sau đều có nghĩa )
a) \(A=sin\left(90^0-x\right)+cos\left(180^0-x\right)+sin^2x\left(1+tan^2x\right)-tan^2x\)
\(=cosx-cosx+sin^2x.\left(\dfrac{1}{cos^2x}\right)-tan^2x\)
\(=tan^2x-tan^2x\)
\(=0\)
b) \(B=\dfrac{1}{sinx}.\sqrt{\dfrac{1}{1+cosx}+\dfrac{1}{1-cosx}}-\sqrt{2}\)
\(=\dfrac{1}{sinx}.\sqrt{\dfrac{1-cosx+1+cosx}{1-cos^2x}}-\sqrt{2}\)
\(=\dfrac{1}{sinx}.\sqrt{\dfrac{2}{sin^2x}}-\sqrt{2}\)
\(=\dfrac{\sqrt{2}}{sin^2x}-\sqrt{2}\)
\(=\dfrac{\sqrt{2}\left(1-sin^2x\right)}{sin^2x}\)
\(=\dfrac{\sqrt{2}cos^2x}{sin^2x}\)
\(=\sqrt{2}tan^2x\)
a) \(A=sin\left(90^0-x\right)+cos\left(180^0-x\right)+sin^2x\left(1+tan^2x\right)-tan^2x\)
\(=cosx-cosx+sin^2x.\left(\dfrac{1}{cos^2x}\right)-tan^2x\)
\(=tan^2x-tan^2x\)
\(=0\)
b) \(B=\dfrac{1}{sinx}.\sqrt{\dfrac{1}{1+cosx}+\dfrac{1}{1-cosx}}-\sqrt{2}\)
\(=\dfrac{1}{sinx}.\sqrt{\dfrac{1-cosx+1+cosx}{1-cos^2x}}-\sqrt{2}\)
\(=\dfrac{1}{sinx}.\sqrt{\dfrac{2}{sin^2x}}-\sqrt{2}\)
\(=\dfrac{\sqrt{2}}{sin^2x}-\sqrt{2}\)
\(=\dfrac{\sqrt{2}\left(1-sin^2x\right)}{sin^2x}\)
\(=\dfrac{\sqrt{2}cos^2x}{sin^2x}\)
\(=\sqrt{2}tan^2x\)