cho tg ABC cân tại A đường cao AH ,bt AH= .Gọi M là trung điểm của BH, N là trung điểm của AB ; AM cắt CN tại K .CMR: KH là p/g góc CKM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Tam giác $ABC$ cân tại $A$ nên đường cao $AH$ đồng thời là đường trung tuyến, suy ra $H$ là trung điểm của $BC$
\(\Rightarrow CM=MH+CH=\frac{HB}{2}+HC=\frac{BC}{4}+\frac{BC}{2}=\frac{3}{4}BC=\frac{3\sqrt{3}}{4}\)
$M,N$ lần lượt là trung điểm của $BH,AB$ nên $MN$ là đường trung bình ứng với cạnh $AH$ của tam giác $AHB$
$\Rightarrow MN\parallel AH, MN=\frac{AH}{2}$
$\Rightarrow MN\perp BC, MN=\frac{\sqrt{2}}{2}$
Áp dụng định lý Pitago cho tam giác $CNM$ vuông tại $M$:
\(CN=\sqrt{MN^2+CM^2}=\sqrt{\frac{1}{2}+\frac{27}{16}}=\frac{\sqrt{35}}{4}\)
Áp dụng định lý Menelaus cho 3 điểm $A,K,M$ thẳng hàng:
\(\frac{KC}{KN}.\frac{MB}{MC}.\frac{AN}{AB}=1\)
\(\Leftrightarrow \frac{KC}{KN}.\frac{1}{3}.\frac{1}{2}=1\Rightarrow \frac{KC}{KN}=6\Rightarrow \frac{KC}{CN}=\frac{6}{7}\)
\(\Rightarrow KC=\frac{6}{7}.CN=\frac{3\sqrt{35}}{14}\) (1)
Áp dụng định lý Menelaus cho 3 điểm $N,K,C$ thẳng hàng:
\(\frac{AN}{BN}.\frac{KM}{KA}.\frac{CB}{CM}=1\Leftrightarrow 1.\frac{KM}{KA}.\frac{4}{3}=1\)
\(\Leftrightarrow \frac{KM}{KA}=\frac{3}{4}\Rightarrow \frac{KM}{AM}=\frac{3}{7}\)
\(\Rightarrow KM=\frac{3}{7}.AM=\frac{3}{7}.\sqrt{AH^2+MH^2}=\frac{3}{7}.\sqrt{AH^2+(\frac{BC}{4})^2}\)
\(=\frac{3}{7}.\sqrt{(\sqrt{2})^2+(\frac{\sqrt{3}}{4})^2}=\frac{3\sqrt{35}}{28}\) (2)
Từ (1);(2) \(\Rightarrow \frac{KM}{KC}=\frac{1}{2}=\frac{MH}{CH}\), suy ra $KH$ là phân giác góc $\widehat{CKM}$
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
DO đó: ΔAHB=ΔAHC
Suy ra: HB=HC
hay H là trung điểm của BC
b: Xét ΔMAD và ΔMBH có
\(\widehat{MAD}=\widehat{MBH}\)
MA=MB
\(\widehat{AMD}=\widehat{BMH}\)
Do đó:ΔMAD=ΔMBH
Suy ra: AD=BH
hay BH=2,5cm
Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)
hay AH=6(cm)
bạn có biết giải câu c) không ? Nếu giải được thì chỉ giúp mình với
a, Xét tam giác HBA vuông tại H có:
AB2=AH2+BH2(định lí py ta go)
hay 100=AH2+36
=> AH2=64
=> AH=8(cm)
b, Xét tam giác ABH và tam giác ACH có:
góc AHB=góc AHC =90 độ
AB=AC (tam giác ABC cân tại A)
AH chung
=> tam giác ABH = tam giác ACH
c,
Xét tam giác DBH và tam giác ECH có:
BD=CE (gt)
góc DBH= góc ECH (tam giác ABC Cân tại A)
BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)
=> tam giác DBH=tam giác ECH
=> DH=EH( 2 cạnh tương ứng)
=> tam giác HDE cân tại H
d) Vì AB = AC; BD = CE
mà AB - BD = AD
AC - CE = AE
=> AD = AE
Vì ΔHDE cân
=> H ∈ đường trung trực cạnh DE (1)
Xét ΔADHvàΔAEHcó
AD = AE (cmt)
AH (chung)
DH = HE (cmt)
Do đó: ΔADH=ΔAEH(c−c−c)
=> AD = AE ( hai cạnh tương ứng)
=> ΔADE cân tại A
=> A ∈ đường trung trực cạnh DE (2)
(1); (2) => A,H ∈ đường trung trực cạnh DE
=>AH là đường trung trực cạnh DE
CHÚC BẠN HỌC TỐT
a) dễ chứng minh tam giác HBA đồng dạng với tam giác ABC
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\left(1\right)\Rightarrow AB^2=BH\cdot BC\)
b) Xét \(\Delta ABH\)có
BD là đường phân giác của \(\Delta ABH\)
suy ra \(\frac{DH}{DA}=\frac{BH}{AB}\left(2\right)\)
Xét \(\Delta ABC\)có
BE à đường phân giác của \(\Delta ABC\)
suy ra \(\frac{EA}{EC}=\frac{AB}{BC}\left(3\right)\)
từ 1,2,3 suy ra đpcm