K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
23 tháng 8 2019

Lời giải:

Tam giác $ABC$ cân tại $A$ nên đường cao $AH$ đồng thời là đường trung tuyến, suy ra $H$ là trung điểm của $BC$

\(\Rightarrow CM=MH+CH=\frac{HB}{2}+HC=\frac{BC}{4}+\frac{BC}{2}=\frac{3}{4}BC=\frac{3\sqrt{3}}{4}\)

$M,N$ lần lượt là trung điểm của $BH,AB$ nên $MN$ là đường trung bình ứng với cạnh $AH$ của tam giác $AHB$

$\Rightarrow MN\parallel AH, MN=\frac{AH}{2}$

$\Rightarrow MN\perp BC, MN=\frac{\sqrt{2}}{2}$

Áp dụng định lý Pitago cho tam giác $CNM$ vuông tại $M$:

\(CN=\sqrt{MN^2+CM^2}=\sqrt{\frac{1}{2}+\frac{27}{16}}=\frac{\sqrt{35}}{4}\)

Áp dụng định lý Menelaus cho 3 điểm $A,K,M$ thẳng hàng:

\(\frac{KC}{KN}.\frac{MB}{MC}.\frac{AN}{AB}=1\)

\(\Leftrightarrow \frac{KC}{KN}.\frac{1}{3}.\frac{1}{2}=1\Rightarrow \frac{KC}{KN}=6\Rightarrow \frac{KC}{CN}=\frac{6}{7}\)

\(\Rightarrow KC=\frac{6}{7}.CN=\frac{3\sqrt{35}}{14}\) (1)

Áp dụng định lý Menelaus cho 3 điểm $N,K,C$ thẳng hàng:

\(\frac{AN}{BN}.\frac{KM}{KA}.\frac{CB}{CM}=1\Leftrightarrow 1.\frac{KM}{KA}.\frac{4}{3}=1\)

\(\Leftrightarrow \frac{KM}{KA}=\frac{3}{4}\Rightarrow \frac{KM}{AM}=\frac{3}{7}\)

\(\Rightarrow KM=\frac{3}{7}.AM=\frac{3}{7}.\sqrt{AH^2+MH^2}=\frac{3}{7}.\sqrt{AH^2+(\frac{BC}{4})^2}\)

\(=\frac{3}{7}.\sqrt{(\sqrt{2})^2+(\frac{\sqrt{3}}{4})^2}=\frac{3\sqrt{35}}{28}\) (2)

Từ (1);(2) \(\Rightarrow \frac{KM}{KC}=\frac{1}{2}=\frac{MH}{CH}\), suy ra $KH$ là phân giác góc $\widehat{CKM}$

AH
Akai Haruma
Giáo viên
23 tháng 8 2019

Hình vẽ:

Một số hệ thức về cạnh và góc trong tam giác vuông

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

DO đó: ΔAHB=ΔAHC

Suy ra: HB=HC

hay H là trung điểm của BC

b: Xét ΔMAD và ΔMBH có 

\(\widehat{MAD}=\widehat{MBH}\)

MA=MB

\(\widehat{AMD}=\widehat{BMH}\)

Do đó:ΔMAD=ΔMBH

Suy ra: AD=BH

hay BH=2,5cm

Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)

hay AH=6(cm)

6 tháng 2 2022

bạn có biết giải câu c) không ? Nếu giải được thì chỉ giúp mình với

18 tháng 3 2021

Giúp mình với, mình cảm ơn!😢

18 tháng 3 2021

a, Xét tam giác HBA vuông tại H có:

AB2=AH2+BH2(định lí py ta go)

hay 100=AH2+36

=> AH2=64

=> AH=8(cm)

b, Xét tam giác ABH và tam giác ACH có:

góc AHB=góc AHC =90 độ

AB=AC (tam giác ABC cân tại A)

AH chung

=> tam giác ABH = tam giác ACH

c,

Xét tam giác DBH và tam giác ECH có:

BD=CE (gt)

góc DBH= góc ECH (tam giác ABC Cân tại A)

BH=CH (trong tam giác cân, đường cao đồng thời là đường trung tuyến)

=> tam giác DBH=tam giác ECH

=> DH=EH( 2 cạnh tương ứng)

=> tam giác HDE cân tại H

d) Vì AB = AC; BD = CE

mà AB - BD = AD

AC - CE = AE

=> AD = AE

Vì ΔHDE cân

=> H ∈ đường trung trực cạnh DE (1)

Xét ΔADHvàΔAEHcó

AD = AE (cmt)

AH (chung)

DH = HE (cmt)

Do đó: ΔADH=ΔAEH(c−c−c)

=> AD = AE ( hai cạnh tương ứng)

=> ΔADE cân tại A

=> A ∈ đường trung trực cạnh DE (2)

(1); (2) => A,H ∈ đường trung trực cạnh DE

=>AH là đường trung trực cạnh DE

CHÚC BẠN HỌC TỐT

24 tháng 5 2021

......

 

19 tháng 5 2019

a) dễ chứng minh tam giác HBA đồng dạng với tam giác ABC

suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\left(1\right)\Rightarrow AB^2=BH\cdot BC\)

b) Xét \(\Delta ABH\)

BD là đường phân giác của \(\Delta ABH\)

suy ra \(\frac{DH}{DA}=\frac{BH}{AB}\left(2\right)\)

Xét \(\Delta ABC\)

BE à đường phân giác của \(\Delta ABC\)

suy ra \(\frac{EA}{EC}=\frac{AB}{BC}\left(3\right)\)

từ 1,2,3 suy ra đpcm