1 / 2001x2003 + 1/2003x2005 + 1/2005x2007 +...+ 1/2011x2013
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=511/256
b=647/20
c=mình đang suy nghĩ,nhưng nếu bạn k cho mình thì bạn sẽ có câu trả lời
a. 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256
= 1 + ( 1 - 1/2) + ( 1/2 - 1/4) + ( 1/4 - 1/8) + ( 1/8 - 1/16) + ( 1/16 - 1/32) + (1/32 - 1/64) + ( 1/64 - 1/128) + (1/128 - 1/256)
= 1 + 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256
= 2 - 1/256
= 511/256
Câu b bạn có viết sai đề không vậy?
\(\frac{2001x2003+2003x2005}{2003x4006}\)
=\(\frac{2003x.\left(2001+2005\right)}{2003x4006}\)
=\(\frac{2003x.4006}{2003x.4006}\)
=\(\frac{1.1}{1.1}\)
=1
1, \(\dfrac{16\times25-22\times16}{7\times3+5\times7}=\dfrac{16\times\left(25-22\right)}{7\times\left(5+3\right)}=\dfrac{16\times3}{7\times8}\)
\(=\dfrac{6}{7}\)
2,\(\dfrac{2001\times2003+2003\times2005}{2003\times4006}=\dfrac{2003\times\left(2001+2005\right)}{2003\times4006}=\dfrac{2003\times4006}{2003\times4006}=1\)
\(\frac{2005\times2007-1}{2004+2005\times2006}\)
\(=\frac{2005\times\left(2006+1\right)-1}{2004+2005\times2006}\)
\(=\frac{2005\times2006+2005\times1-1}{2004+2005\times2006}\)
\(=\frac{2005\times2006+2005-1}{2004+2005\times2006}\)
\(=\frac{2005\times2006+2004}{2004+2005\times2006}\)
\(=1\)
_Chúc bạn học tốt_
\(A=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2011.2013}\right)\)
\(A=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{4048144}{2011.2013}\)
\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2012.2012}{2011.2013}\)
\(A=\frac{2.3.4...2012}{1.2.3...2011}.\frac{2.3.4...2012}{3.4.5...2013}\)
\(A=2012.\frac{2}{2013}=\frac{4024}{2013}\)
Ta có :
\(A=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right).................\left(1+\dfrac{1}{2011.2013}\right)\)
\(A=\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\left(\dfrac{8}{8}+\dfrac{1}{8}\right)................\left(\dfrac{9999}{9999}+\dfrac{1}{9999}\right)\)
\(A=\dfrac{4}{3}.\dfrac{9}{8}...............\dfrac{10000}{9999}\)
\(A=\dfrac{4.9.................10000}{3.8.............9999}\)
\(A=\dfrac{2.2.3.3................100.100}{1.3.2.4...............99.101}\)
\(A=\dfrac{2.100}{101}=\dfrac{200}{101}\)
~ Chúc bn học tốt ~
\(\dfrac{1}{2001.2003}+\dfrac{1}{2003.2005}+...+\dfrac{1}{2011.2013}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{2001.2003}+\dfrac{1}{2003.2005}+...+\dfrac{1}{2011.2013}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2001}-\dfrac{1}{2003}+\dfrac{1}{2003}-\dfrac{1}{2005}+...+\dfrac{1}{2011}-\dfrac{1}{2013}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2001}-\dfrac{1}{2013}\right)=\dfrac{2}{1342671}\)
=1/2.(2/2001.2003+2/2003.2005+.....+2/2011.2013)
=1/2(1/2001-1/2003+1/2003-1/2005+....+1/2011-1/2013)
=1/2(1/2001-1/2013)
=2/1342671