Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy M,N thoả mãn MA = NC và ANM + BMN = 60 độ. Chứng minh: MN = BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABNC có
M là trung điểm chung của AN và BC
AB=AC
=>ABNC là hình bình hành
=>BN=AC=AB
=>ΔBAN cân tạiB
Xét \(\Delta AMB\) và \(\Delta NMC\) có :
\(\widehat{AMB}=\widehat{NMC}\) ( đối đỉnh )
AM = NM ( gt )
MB = MC ( M là trung điểm của BC )
\(\Rightarrow\Delta AMB=\Delta NMC\) ( c.g.c )
\(\Rightarrow\widehat{BAM}=\widehat{CNM}\) ( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong
\(\Rightarrow AB//NC\) (đpcm)
Xét \(\Delta AMCvà\Delta NMBcó\) :
\(\widehat{AMC}=\widehat{NMB}\) ( đối đỉnh )
AM = NM ( gt )
MC = MB ( M là trung điểm của BC )
\(\Rightarrow\Delta AMC=\Delta NMB\) ( c.g.c )
Xét \(\Delta AMBvà\Delta AMCcó\) :
AM chung
MB = MC ( M là trung điểm của BC )
AB = AC (\(\Delta ABC\) cân tại A )
\(\Rightarrow\Delta AMB=\Delta AMC\) ( c.c.c )
mà \(\Delta NMB=\Delta AMC\)
\(\Rightarrow\Delta AMB=\Delta NMB\) ( tính chất bắc cầu )
\(\Rightarrow BA=BN\) ( 2 cạnh tương ứng )
\(\Rightarrow\Delta ABN\) cân tại B ( đpcm )
Xét ΔANM và ΔABC có
AN/AB=AM/AC
\(\widehat{NAM}\) chung
Do đó: ΔANM\(\sim\)ΔABC
Một tờ giấy hình vuông có diện tích là 72 cm2 thì đường chéo của tờ giấy đó dài bao nhiêu?
Cắt và ghép thành 2 hình vuông nhỏ, mỗi hình có diện tích:
72 : 2 = 36 (cm2)
Vì 36 = 6 x 6 nên cạnh hình vuông nhỏ bằng 6cm.
Cạnh hình vuông nhỏ bằng ½ đường chéo hình vuông lớn.
Đường chéo hình vuông lớn là:
6 x 2 = 12 (cm)
Đáp số: 12 cm
Bài 34:
Hình vuông ABCD và hình chữ nhật MNPQ có chu vi bằng nhau.
Hãy so sánh cạnh hình vuông và cạnh của hình chữ nhật. Hãy so sánh diện tích hình vuông và diện tích hình chữ nhật.
Chu vi:
Do chu vi 2 hình bằng nhau nên nửa chu vi 2 hình cũng bằng nhau.
Gọi a là cạnh hình vuông; b và c là cạnh hình chữ nhật.
Ta có a+a = b+c => (a+a)/2 = (b+c)/2
Hay a = (b+c)/2
a là trung bình cộng của b và c.
a: \(\widehat{ACB}=90^0-30^0=60^0\)
d: Xét tứ giác ABNC có
M là trung điểm của BC
M là trung điểm của AN
Do đó: ABNC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABNC là hình chữ nhật
Suy ra: AN=BC
a: Xét ΔABM và ΔNCM có
MA=MN
\(\widehat{AMB}=\widehat{NMC}\)
MB=MC
Do đó: ΔABM=ΔNCM
a)\(\Delta AMN,\Delta BMN\)có chung đường cao hạ từ N,có đáy AM = BM nên SAMN = SBMN
b) AC = AN + NC = AN +\(\frac{1}{2}AN=\frac{3}{2}AN\)nên\(\Delta ABC,\Delta ABN\)có chung đường cao hạ từ B ; đáy AC = 3/2 AN
\(\Rightarrow S_{ABC}=\frac{3}{2}S_{ABN}=\frac{3}{2}\left(S_{AMN}+S_{BMN}\right)=\frac{3}{2}\times2S_{AMN}=3S_{AMN}\)
\(\Rightarrow S_{MNCB}=S_{ABC}-S_{AMN}=3S_{AMN}-S_{AMN}=2S_{AMN}\Rightarrow S_{AMN}=\frac{1}{2}S_{MNCB}\)
c)\(\Delta AMD,\Delta BMD\)có chung đường cao hạ từ D ; đáy AM = MB nên SAMD = SBMD mà SAMN = SBMN
=> SAMD - SAMN = SBMD - SBMN => SAND = SBND mà \(\Delta NCD,\Delta AND\)có chung đường cao hạ từ D ; đáy NC = 1/2 AN
=> SNCD = 1/2 SAND = 1/2 SBND mà\(\Delta NCD,\Delta BND\)có chung đường cao hạ từ N nên có đáy CD = 1/2 BD
=> BC = CD
Bn cop hình vào đc hem.