cho tam giác abc vuông tại a có đường cao ah chia cạnh huyền bc thành hai đoạn bh=4 hc=9 a) tính ah,ab,ac b) gọi m,n lần lượt là hình chiếu của h trên ab và ac chứng minh rằng am.ab=an.ac
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b: Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật
Suy ra: AH=NM
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=HB\cdot HC\)
hay AH=6(cm)
mà AH=NM
nên MN=6cm
Bài 2:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)
\(\widehat{ANH}=90^0\)
\(\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=MN
Ta có: \(AM\cdot AB+AN\cdot AC\)
\(=AH^2+AH^2\)
\(=2AH^2=2\cdot MN^2\)
a) XétΔABC vg tại A
⇒ BC²=AB²+AC²
⇒ BC=17cm
Xét ΔABH và ΔCBA có:
góc AHB= góc CBA
góc B: chung
⇒ ΔABH ∞ ΔCBA (g.g)
⇒ AB/BC=BH/BA
⇒ BH=AB²/BC
⇒ BH=64/17
Xét ΔABH vg tại H
⇒AB²=BH²+AH²
⇒ AH=120/17
b) xét tg AMHN có: góc AMH= góc ANH= góc MAN=90
⇒ tg AMHN là hcn (dhnb)
⇒ AH=MN (t/c hcn)
⇒ MN=120/17
, Ta thấy tam giác AMH đồng dạng tam giác AHB (g.g) suy ra AM/AH = AH/ AB => AM.AB =AH^2
tam giác ANH đồng dạng tam giác AHC (g.g)
=> AN/AH = AH/AC
=> AN.AC = AH^2
suy ra AM.AB = AN.AC.
\(a,\text{Áp dụng PTG:}BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \text{Áp dụng HTL:}\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\end{matrix}\right.\\ b,\text{Áp dụng HTL:}\left\{{}\begin{matrix}AM\cdot AB=AH^2\\AN\cdot AC=AH^2\end{matrix}\right.\\ \Rightarrow AM\cdot AB=AN\cdot AC\)
a) Xét ΔABC vuông tại A ta có:
\(BC^2\)= \(AB^2+AC^2\)
\(BC^2\) = \(8^2+15^2\)
BC = 17 (cm)
Xét ΔHBA và ΔABC ta có:
\(\widehat{AHB}=\widehat{BAC}\) = \(90^0\)
\(\widehat{ABH}=\widehat{ABC}\) (góc chung)
=> ΔHBA~ΔABC (g-g)
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}=\dfrac{AH}{AC}\) (tsdd)
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
=> \(AB^2=BH.BC\)
=> \(8^2=17.BH\)
=> BH = \(\dfrac{64}{17}\) (cm)
Lại có: \(\dfrac{AB}{BC}=\dfrac{AH}{AC}\) (cmt)
=> \(\dfrac{8}{17}=\dfrac{AH}{15}\)
=> AH = \(\dfrac{120}{17}\) (cm)
b) Xét tg AMNH ta có:
\(\widehat{MAN}=90^0\) (ΔABC vuông tại A)
\(\widehat{AMH}=90^0\) (M là hình chiếu của H lên AB)
\(\widehat{ANH}=90^0\) (N là hình chiếu của H lên AC)
=> Tg AMNH là hcn
Ta có: \(\left\{{}\begin{matrix}AH=\dfrac{120}{17}\\AH=MN\end{matrix}\right.\)
=> MN = \(\dfrac{120}{7}\)
c) Xét ΔAMH và ΔAHB ta có:
\(\widehat{MAH}=\widehat{BAH}\) (góc chung)
\(\widehat{AMH}=\widehat{AHB}\) = \(90^0\)
=> ΔAMH ~ ΔAHB (g-g)
=> \(\dfrac{AM}{AH}=\dfrac{AH}{AB}\) (tsdd)
=> \(AH^2=AM.AB\)
Tương tự như trên xét ΔANH và ΔAHC
=> \(\dfrac{AN}{AH}=\dfrac{AH}{AC}\) (tsdd)
=> \(AH^2=AN.AC\)
=> đpcm (=\(AH^2\))
a, Xét tam giác AHB vuông tại H, đường cao MH
\(AH^2=AM.AB\)( hệ thức lượng ) (1)
Xét tam giác AHC vuông tại H, đường cao HN
\(AH^2=AN.AC\)( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra : \(AM.AB=AN.AC\)(3)
b, Xét tam giác AMN và tam giác ACB ta có :
^A _ chung
\(\left(3\right)\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)
Vậy tam giác AMN ~ tam giác ACB ( c.g.c )
\(\frac{MN}{BC}=\frac{AM}{AC}\)(4)
Ta có : BC = HB + HC = 9 + 4 = 13 cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AC^2=HC.BC=9.13=117\Rightarrow AC=3\sqrt{13}\)cm
Theo định lí Pytago : \(AB=\sqrt{BC^2-AC^2}=\sqrt{169-\left(3\sqrt{13}\right)^2}=2\sqrt{13}\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{2\sqrt{13}.3\sqrt{13}}{13}=6\)cm
lại có : \(AH^2=AM.AB\)cma => \(AM=\frac{36}{2\sqrt{13}}=\frac{18\sqrt{13}}{13}\)cm
Thay vào (4) ta được : \(\frac{MN}{13}=\frac{\frac{18\sqrt{13}}{13}}{3\sqrt{13}}=6\)cm
c, Lại có : \(AH^2=AN.AC\)cma => \(AN=\frac{36}{3\sqrt{13}}=\frac{12\sqrt{13}}{13}\)cm
Ta có : \(S_{AMN}=\frac{1}{2}AN.AM=\frac{1}{2}.\frac{12\sqrt{13}}{13}.\frac{18\sqrt{13}}{13}=\frac{108}{13}\)cm 2
\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.2\sqrt{13}.3\sqrt{13}=39\)cm 2
Do \(S_{AMN}+S_{BMNC}=S_{ABC}\Rightarrow S_{BMNC}=S_{ABC}-S_{AMN}\)
\(=39-\frac{108}{13}=\frac{399}{13}\)cm2
a: BC=BH+CH
=4+9=13
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=4\cdot9=36\)
=>AH=6
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\\AC=\sqrt{9\cdot13}=3\sqrt{13}\end{matrix}\right.\)
b: ΔHAB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
ΔHAC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1), (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Có hình vẽ ko ạ