K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2023

Ta có: \(6a\) là hợp số

\(\Rightarrow\)Không có giá trị \(a\) thỏa mãn

16 tháng 10 2023

Ta có:

6a có ước là 2; 3 nên 6a là hợp số với mọi a là số tự nhiên

Vậy không tìm được số tự nhiên a thỏa mãn đề bài

15 tháng 2 2016

khó @gmail.com

Câu 1:Tập hợp các số tự nhiên là bội của 13 và có phần tử.Câu 2:Có số vừa là bội của 3 vừa là ước của 54.Câu 3:Tập hợp các số tự nhiên sao cho là {}(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").Câu 4:Tập hợp các số tự nhiên nhỏ hơn 120 chia hết cho 2 và 5 có số phần tử làCâu 5:Cho a là một số chẵn chia hết cho 5, b là một số chia hết cho 2.Vậy a + b khi chia cho...
Đọc tiếp

Câu 1:
Tập hợp các số tự nhiên là bội của 13 và có phần tử.

Câu 2:
Có số vừa là bội của 3 vừa là ước của 54.

Câu 3:
Tập hợp các số tự nhiên sao cho là {}
(Nhập các phần tử theo giá trị tăng dần, ngăn cách bởi dấu ";").

Câu 4:
Tập hợp các số tự nhiên nhỏ hơn 120 chia hết cho 2 và 5 có số phần tử là

Câu 5:
Cho a là một số chẵn chia hết cho 5, b là một số chia hết cho 2.Vậy a + b khi chia cho 2 thì có số dư là

Câu 6:
Tổng của tất cả các số nguyên tố có 1 chữ số là

Câu 7:
Có bao nhiêu hợp số có dạng ?
Trả lời: có số.

Câu 8:
Tìm số nguyên tố nhỏ nhất sao cho và cũng là số nguyên tố.
Trả lời: Số nguyên tố

Câu 9:
Cho là các số nguyên tố thỏa mãn . Tổng .

Câu 10:
Tổng hai số nguyên tố là một số nguyên tố. Vậy hiệu của hai số nguyên tố đó là .

0
AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Lời giải:

Với $a$ là stn thì $6a$ không thể là số nguyên tố (vì đã chia hết cho 2,3 sẵn rồi)

Do đó không đáp án nào đúng nhé bạn.

23 tháng 11 2016

vì n và n+1 là 2 số tự nhiên liên tiếp

=) n + n+1 chia hết cho 2        (1)

vì n, n+1 và n+2 là 3 stn liên tiếp 

=) n+n+1+n+2 chia hết cho 3     (2)

Từ (1) và (2) =) n+n+1+n+2 chia hết cho 6

hay BCNN của n+n+1+n+2 là 6

vậy ....

Xét p = 2 => p + 10 = 12 không là số nguyên tố
Xét p = 3 => p + 10 = 13 là số nguyên tố, p + 20 = 23 là số nguyên tố.
=> Chôn p = 3.
Xét p > 3 mà p là số nguyên tố => p có dạng p = 3k + 1 hoặc p = 3k + 2
+ Nếu p = 3k + 1 => p + 20 = 3k + 21 = 3(k +7) chia hết cho 3
Mà p > 3 => p + 20 không là số nguyên tố (vô lý)
+ Nếu p = 3k + 2 => p + 10 = 3k + 12 = 3(k + 4) chia hết cho 3
Mà p >3 => p + 10 không là số nguyên tố (vô lý)
Vậy p =3

b) Có 4n+5 chia hết cho 2n+1

=>2(n+1)+3 chia hết cho 2n+1

=>2n+1 thuộc Ư(3)={1;3}

Với 2n+1=1    =>n=0

Với 2n+1=3      =>n=1

Vì đề bài là tìm số tự nhiên n nên 3 chỉ có 2 ước thôi nha

16 tháng 3 2020

a, p là số nguyên tố

+ xét p = 2 => p + 10 = 2 + 10 = 12 là hợp số 

=> p = 2 (loại)

+ xét p= 3 => p + 10 = 3 + 13 = 13 thuộc P

                      p + 20 = 3 + 20 = 23 thuộc P

=> p = 3 (nhận)

+ p là số nguyên tố và p > 3

=> p = 3k + 1 hoặc  p = 3k + 2

xét p = 3k + 1 => p + 20 = 3k + 1 + 20 = 3k + 21 = 3(k + 7) là hợp số

=> p = 3k + 1 loaị

+ xét p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4) là hợp số

=> p = 3k + 2 loại

vậy p  = 3

b, 4n + 5 chia hết cho 2n + 1

=> 4n + 2 + 3 chia hết cho 2n + 1

=> 2(2n + 1) + 3 chia hết cho 2n + 1

=> 3 chia hết cho  2n + 1

xét ư(3) là ok nhé

Bài 6: 

a: Là hợp số

b: Là hợp số

10 tháng 11 2022

c1

p+1;p+2;p+3p+1;p+2;p+3 là các số tự nhiên liên tiếp

Trong 3 số tự nhiên liên tiếp luôn tồn tại ít nhất 1 số chẵn. Mà số nguyên tố chẵn duy nhất là 2 nên để 3 số đó đều là số nguyên tố thì có 1 số bằng 2.

3 số tự nhiên liên tiếp có 1 số bằng 2 là 1;2;31;2;3 hoặc (2;3;4)(2;3;4)

Cả 2 bộ số trên đều không thỏa mãn vì 1 và 4 không là số nguyên tố.

Do đó không có số tự nhiên p nào thỏa mãn yêu cầu bài toán.

c2

a) 5 . 6 . 7  + 8 . 9 

ta có :

5 . 6 . 7 chia hết cho 3

8 . 9 chia hết cho 3

=> 5 . 6 . 7 + 8 . 9 chia hết cho 3   và ( 5 . 6 . 7 + 8 . 9 ) > 3 nên là hợp số

b 5 . 7 . 9 . 11 - 2 . 3 . 7

ta có :

5 . 7 . 9 . 11 chia hết cho 7

2 . 3 . 7 chia hết cho 7

=> 5 . 7 . 9 . 11 - 2 . 3 . 7 chia hết cho 7 và ( 5 . 7 . 9 . 11 - 2 . 3 . 7 ) > 7 nên là hợp số

c3