Chứng minh rằng aaa chia hết cho a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nếu số aaa là số tự nhiên thì lời giải là :
aaa chia hết cho 9 =>aaa \(\in\) B(9)
=> aaa \(\in\)(9;81;729;6561;...)
Mà aaa là số có 3 chữ số nên => aaa =729
b) ab+ba
Ta có:ab=10a+b
ba=10b+a
ab+ba=10a+b+10b+a
= 11a + 11b
Ta thấy: 11a⋮11 ; 11b⋮11
=>ab+ba⋮11 (ĐPCM)
a, aaa có tổng các chữ số là a+a+a = 3xa
Nên aaa luôn luôn chia hết cho a
b, Có: 6 đồng dư với 1 (mod 5)
=> 6 ^100 đồng dư vs 1^100 đồng dư với 1 ( mod 5)
=> 6^100 chia 5 dư 1
=> 6^100 - 1 chia hết cho 5
c, Xét aaa có a = 1, 2, 3, 4, 5, 6, 7, 8, 9
aaa chia hết cho 9 khi 3a chia hết cho 9 khi a = 3 hoặc a = 9
Toonggr các chữ số của aaa là a+a+a=3a.Mà 3a chia hết cho 3.=>aaa chia hết cho 3
aaa
= 100a + 10a + a
= a x (100 + 10 + 1) chia hết cho a (Đpcm)
Ta có : aaa = 111 x a = 37 x 3 x a
=> aaa luôn chia hết cho 37
Còn cái kia chịu
Bài 1
a, cm : A = 165 + 215 ⋮ 3
A = 165 + 215
A = (24)5 + 215
A = 220 + 215
A = 215.(25 + 1)
A = 215. 33 ⋮ 3 (đpcm)
b,cm : B = 88 + 220 ⋮ 17
B = (23)8 + 220
B = 216 + 220
B = 216.(1 + 24)
B = 216. 17 ⋮ 17 (đpcm)
c, cm: C = 1 - 2 + 22 - 23 + 24 - 25 + 26 -...-22021 + 22022 : 6 dư 1
C=1+(-2+22-23+24- 25+26)+...+(-22017+22018-22019+22020-22021+22022)
C = 1 + 42 +...+ 22016.(-2 + 22 - 23 + 24 - 25 + 26)
C = 1 + 42+...+ 22016.42
C = 1 + 42.(20+...+22016)
42 ⋮ 6 ⇒ C = 1 + 42.(20+...+22016) : 6 dư 1 đpcm
a) Ta có aaa = 100a+10a+a = 111.a = 37.3.a chia hết cho 3
Tick nha?
aaa= a .111 chia hết cho a