K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
12 tháng 5 2021

\(\frac{1}{3x^2+1}\ge-\frac{3}{8}x+\frac{5}{8}\)

\(\Leftrightarrow\frac{8}{8\left(3x^2+1\right)}\ge\frac{\left(-3x+5\right)\left(3x^2+1\right)}{8\left(3x^2+1\right)}\)

\(\Leftrightarrow8\ge\left(-3x+5\right)\left(3x^2+1\right)\)

Ta sẽ tìm GTLN của \(\left(-3x+5\right)\left(3x^2+1\right)\).

Ta có: 

\(\left(-3x+5\right)\left(3x^2+1\right)=-9x^3+15x-3x+5\)

\(=-9x^3+18x^2-9x-3x^2+6x-3+8\)

\(=-9x\left(x-1\right)^2-3\left(x-1\right)^2+8\)

\(\ge8\)do \(x>0\).

Dấu \(=\)xảy ra khi \(x=1\).

Từ đây ta có đpcm. 

NV
9 tháng 11 2019

Đề bài hình như ko đúng, với \(x=y=z=1\) thì dấu "=" ko xảy ra

16 tháng 11 2019

\(\Sigma\frac{1}{\left(1+x\right)^3}\)

10 tháng 3 2020

c1: phân tích từng cái

c2, nhân x cho (1) y cho 2

sau đs dùng bunhia 

từ x+y=1

=> x^2-xy+y^2...

11 tháng 3 2020

\(VT-VP=\frac{\left(3x^2+7xy+3y^2\right)\left(x-y\right)^2}{3\left(1-x^2\right)\left(1-y^2\right)}\ge0\)

6 tháng 8 2020

Kiểm tra lại đề đê. Với [ a = 1/10, b = 1/3, c = 1/10 ] thì đề sai.

6 tháng 8 2020

(Đề đây nhưng chắc số 3 ở ngoài căn nha, họ đánh nhầm)

17 tháng 4 2020

1) \(\left(a;b\right)=\left(\sqrt{3x+4y};\sqrt{8-x+y}\right)\) \(\left(a;b\ge0\right)\)

hpt \(\Leftrightarrow\)\(\hept{\begin{cases}4a+b=23\\3b-2\sqrt{-a^2-9b^2+110}=5\end{cases}}\Leftrightarrow\hept{\begin{cases}b=23-4a\\32-6a=\sqrt{-145a^2+1656a-4651}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=23-4a\\181a^2-2040a+5675=0\left(1\right)\end{cases}}\)

(1) \(\Leftrightarrow\)\(\orbr{\begin{cases}a=5\left(nhan\right)\Rightarrow b=3\left(nhan\right)\\a=\frac{1135}{181}\left(nhan\right)\Rightarrow b=\frac{-377}{181}\left(loai\right)\end{cases}}\)\(\Rightarrow\)\(a=5;b=3\)\(\Rightarrow\)\(x=3;y=4\)

17 tháng 4 2020

Chuẩn hóa \(a+b+c=3\)

WLOG \(a\le b\le c\)

Ta có: 

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(ab^2+bc^2+ca^2\right)=\left(a+b\right)\left(a-b\right)^2+\left(2a-b+c\right)\left(c-a\right)\left(c-b\right)\ge0\)

\(\Sigma_{cyc}a.\Sigma_{cyc}a^2\ge3\Sigma_{cyc}ab^2\)

\(ab^2+bc^2+ca^2-a^2b-b^2c-c^2a=\left(a-b\right)\left(b-c\right)\left(c-a\right)\ge0\)

\(\Sigma_{cyc}ab^2\ge\Sigma_{cyc}a^2b\)

Giờ ta áp dụng hai bđt trên:

\(\Sigma_{cyc}\frac{a^2}{b}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab^2+bc^2+ca^2}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}=a^2+b^2+c^2\left(\cdot\right)\)

\(\hept{\begin{cases}\sqrt{\frac{a^2+b^2}{2}}\le\frac{a^2+b^2+2}{4}\\\sqrt{\frac{b^2+c^2}{2}}\le\frac{b^2+c^2+2}{4}\\\sqrt{\frac{c^2+a^2}{2}}\le\frac{c^2+a^2+2}{4}\end{cases}\Rightarrow\Sigma_{cyc}\sqrt{\frac{a^2+b^2}{2}}\le\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{3}{2}\left(\cdot\cdot\right)}\)

Với:

\(a^2+b^2+c^2\ge3\Rightarrow a^2+b^2+c^2\ge\frac{1}{2}\left(a^2+b^2+c^2\right)+\frac{3}{2}\left(\cdot\cdot\cdot\right)\) \(\left(\cdot\right),\left(\cdot\cdot\cdot\right)và\left(\cdot\cdot\cdot\right)\Rightarrow\Sigma_{cyc}\frac{a^2}{b}\ge\Sigma_{cyc}\sqrt{\frac{a^2+b^2}{2}}\)

1 tháng 1 2020

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\)

\(\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)

\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\)

\(\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

9 tháng 7 2020

áp dụng bđt Cô -si: x+y+z\(\ge3\sqrt[3]{xyz}\) với 3 số x,y,z không âm

ta có: \(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=3\sqrt[3]{\frac{1}{8}}=\frac{3}{2}\)(1)

tương tự: \(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\frac{3}{2}\) (2)

\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}\)(3)

cộng (1), (2) và (3) ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge3.\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{9}{2}-\frac{3}{2}-\frac{6}{4}=\frac{3}{2}\)

dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)


4 tháng 11 2017

vì x+y+z=1nên

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\)\(\frac{x+y+z}{x}+\frac{x+y+z}{y}+\frac{x+y+z}{z}\)\(=3+\left(\frac{x}{y}+\frac{y}{z}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\)=\(3+\frac{x^2+y^2}{xy}+\frac{y^2+z^2}{yz}+\frac{x^2+z^2}{xz}\)

nen \(\frac{xy}{x^2+y^2}+\frac{yz}{y^2+z^2}+\frac{xz}{x^2+z^2}+\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\) =\(\left(\frac{xy}{x^2+y^2}+\frac{x^2+y^2}{4xy}\right)+\left(\frac{yz}{y^2+z^2}+\frac{y^2+z^2}{4yz}\right)+\left(\frac{xz}{x^2+z^2}+\frac{x^2+z^2}{xz}\right)+\frac{3}{4}\)

\(\ge2.\frac{1}{2}+\frac{2.1}{2}+\frac{2.1}{2}+\frac{3}{4}=\frac{15}{4}\)(dpcm)

dau = xay ra khi x=y=z=1/3

29 tháng 7 2020

1/

\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{2}{xy+yz+xz}+\frac{1}{xy+yx+xz}+\frac{2}{x^2+y^2+z^2}\)\

\(\ge\frac{2}{\frac{\left(x+y+z\right)^2}{3}}+\frac{\left(2\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=14\)

Ta thấy dấu bằng xảy ra khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\\frac{1}{xy+yz+xz}=\frac{\sqrt{2}}{x^2+y^2+z^2}\end{cases}}\) 

Hai điều kiện không thể đồng thời xảy ra nên không tồn tại dấu bằng. Vậy P > 14

29 tháng 7 2020

1) vì x,y,z là các số bất kì, ta có bđt luôn đúng: (x+y+z)2 \(\ge\)3(xy+yz+zx)

vì x+y+z=1 nên suy ra \(\frac{1}{xy+yz+zx}\ge3\)

đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

ta có \(\frac{1}{3\left(xy+yz+zx\right)}+\frac{1}{x^2+y^2+z^2}\ge\frac{4}{\left(x+y+z\right)^3}=4\)

\(\Rightarrow\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{4}{2\left(xy+yz+zx\right)}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\)\(\ge2\cdot3+2\cdot4=14\)

đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\2\left(xy+yz+zx\right)=x^2+y^2+z^2\end{cases}}\)

hệ này vô nghiệm nên bât không trở thành đẳng thức

vậy bất đẳng thức được chứng minh

2) ta có \(\frac{x^3}{y^3+8}+\frac{y+2}{27}+\frac{y^2-2y+4}{27}\ge\frac{x}{3}\Rightarrow\frac{x^3}{y^3+8}\ge\frac{9x+y-y^2-6}{27}\)

tương tự ta có: \(\frac{y^3}{z^3+8}\ge\frac{9y+z-z^2-6}{27},\frac{z^3}{x^3+8}\ge\frac{9z+x-x^2-6}{27}\)nên

\(VT\ge\frac{10\left(x+y+z\right)-\left(x^2+y^2+z^2\right)-18}{27}=\frac{12-\left(x^2+y^2+z^2\right)}{27}\)mà ta lại có 

\(\frac{12-\left(x^2+y^2+z^2\right)27}{27}=\frac{3+\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{27}=\frac{1}{9}+\frac{2}{27}\left(xy+yz+zx\right)\)

từ đó ta có điều phải chứng minh, đẳng thức xảy ra khi x=y=z=1