K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

mk ko biet , cau len mang hoi di , chac se co do , tk mk nha

3 tháng 8 2020

Ta có : \(P=\frac{1}{\left(a+b\right)^3}\left(\frac{1}{a^3}+\frac{1}{b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P=\frac{1}{\left(a+b\right)^3}\left(\frac{a^3+b^3}{a^3b^3}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{a^2+b^2}{a^2b^2}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{a+b}{ab}\right)\)

=> \(P=\frac{1}{\left(a+b\right)^3}\left(\frac{a^3+b^3}{1}\right)+\frac{3}{\left(a+b\right)^4}\left(\frac{a^2+b^2}{1}\right)+\frac{6}{\left(a+b\right)^5}\left(\frac{a+b}{1}\right)\)

=> \(P=\frac{a^3+b^3}{\left(a+b\right)^3}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}\)

=> \(P=\frac{\left(a+b\right)\left(a^2+ab+b^2\right)}{\left(a+b\right)^3}+\frac{3\left(a^2+b^2+2a\right)-6a}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}\)

=> \(P=\frac{\left(a+b\right)\left(a^2+ab+b^2\right)}{\left(a+b\right)^3}+\frac{3\left(a+b\right)^2}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}-\frac{6}{\left(a+b\right)^4}\)

=> \(P=\frac{a^2+ab+b^2}{\left(a+b\right)^2}+\frac{3}{\left(a+b\right)^2}+\frac{6}{\left(a+b\right)^4}-\frac{6}{\left(a+b\right)^4}\)

=> \(P=\frac{a^2+ab+b^2}{\left(a+b\right)^2}+\frac{3}{\left(a+b\right)^2}=\frac{2a^2+4ab+2b^2}{\left(a+b\right)^2}-\frac{a^2+b^2}{\left(a+b\right)^2}\)

=> \(P=2-\frac{a^2+b^2}{\left(a+b\right)^2}=1+\frac{-2}{\left(a+b\right)^2}\)

15 tháng 8 2017

1. D= 1/3 + 1/3.4 + 1/3.4.5 + 1/3.4.5....n < 1/2 + 1/3.4 + 1/4.5 + ...+ 1/ n.(n-1)

=> còn lại thì bạn có thể tự chứng minh

16 tháng 8 2017

mk chả hiểu j

22 tháng 2 2020

a, Ta có : \(\frac{3y}{4}=\frac{3y}{4}.1=\frac{3y}{4}.\frac{2x}{2x}=\frac{6xy}{8x}\) ( đpcm )

b, Ta có : \(6x^2y=6x^2y\)

=> \(3x^2.2y=\left(-3x^2\right).\left(-2y\right)\)

=> \(\frac{-3x^2}{2y}=\frac{3x^2}{-2y}\) ( đpcm )

c, Ta có : \(6x-6y=6x-6y\)

=> \(6x-6y=-6y+6x\)

=> \(6\left(x-y\right)=-6\left(y-x\right)\)

=> \(2\left(x-y\right).3=-2\left(y-x\right).3\)

=> \(\frac{2\left(x-y\right)}{3\left(y-x\right)}=\frac{-2}{3}\) ( đpcm )

22 tháng 2 2020

thank you

28 tháng 2 2017

Ta có: \(2ab+c=\dfrac{4ab+1-2a-2b}{2}=\dfrac{\left(2a-1\right)\left(2b-1\right)}{2}\)

Và: \(a+b=\dfrac{1-2c}{2}\)

\(\Rightarrow\left(a+b\right)^2=\dfrac{\left(2c-1\right)^2}{4}\)

Thế vô bài toán ta được

\(P=\dfrac{2ab+c}{\left(a+b\right)^2}.\dfrac{2bc+a}{\left(b+c\right)^2}.\dfrac{2ca+b}{\left(c+a\right)^2}\)

\(=\dfrac{\dfrac{\left(2a-1\right)\left(2b-1\right)}{2}}{\dfrac{\left(2c-1\right)^2}{4}}.\dfrac{\dfrac{\left(2b-1\right)\left(2c-1\right)}{2}}{\dfrac{\left(2a-1\right)^2}{4}}.\dfrac{\dfrac{\left(2c-1\right)\left(2a-1\right)}{2}}{\dfrac{\left(2b-1\right)^2}{4}}\)

\(=\dfrac{4.4.4}{2.2.2}=8\)

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi

25 tháng 2 2017

Ta có:

\(\frac{a}{b}< 1\\ \Rightarrow a< b\\ \Rightarrow am< bm\left(m\in N^{\cdot}\right)\\ \Rightarrow am+ab< bm+ab\\\Rightarrow a\left(b+m\right)< b\left(a+m\right)\\ \Rightarrow\frac{a}{b} < \frac{a+m}{b+m}\)

27 tháng 3 2020
https://i.imgur.com/PTEMisy.jpg
27 tháng 3 2020

https://hoc24.vn/hoi-dap/question/697806.html