cho biểu thức A= |x^2 - 1| + |x +1|. Tìm x để A = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:
\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)
b: Để E<1 thì E-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
c: Để E nguyên thì \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)
hay \(x\in\left\{16;25;49\right\}\)
Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
Thay \(x=\sqrt{3}-1\) vào \(B\), ta được
\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)
b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)
Vậy \(B_{min}=-2\) khi \(x=0\)
a) Giá trị của biểu thức A đã co xác định
\(\Leftrightarrow\hept{\begin{cases}x^2+x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x+1\right)\ne0\\x\ne-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)
Vậy với \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)thì giá trị của biểu thức A đã cho được xác định .
ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
b)
+) \(A=\left(\frac{1}{x^2+x}+\frac{1}{x+1}\right).x^2\)
\(A=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{x+1}\right).x^2\)
\(A=\frac{1+x}{x\left(x+1\right)}.x^2\)
\(A=\frac{1}{x}.x^2=x\)
+)
Ta có :
\(A\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
<=> x = 0 ( không thỏa mãn ĐKXĐ) hoặc x = 1( thỏa mãn ĐKXĐ) hoặc x = -1 ( Không thỏa mãn ĐKXĐ)
Vậy với x = 1 thì \(A\left(x^2-1\right)=0\)
\(a.ĐKXĐ:\hept{\begin{cases}x^2+x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\left(x+1\right)\ne0\\x\ne-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne0vax\ne-1\\x\ne-1\end{cases}\Leftrightarrow}x\ne0vax\ne-1}\)
\(A=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{x+1}\right).x^2\)
\(=\frac{1+1x}{x\left(x+1\right)}.x^2\)
\(=\frac{1+1x}{x^2+x}.x^2\)
\(=\frac{1+1x}{x}\) với \(x\ne0\)và \(x\ne-1\)
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.
Để A = 0 thì |x² - 1| = 0 và |x + 1| = 0
*) |x² - 1| = 0
x² - 1 = 0
x² = 1
x = 1 hoặc x = -1 (1)
*) |x + 1| = 0
x + 1 = 0
x = -1 (2)
Từ (1) và (2) ⇒ x = -1
Vậy x = -1 thì A = 0
Bạn xem lại nhé mình trả lời rồi nha bạn không nên đăng lại nhé !
a) Thay \(x=-1\) vào A ta có:
\(A=\left|\left(-1\right)^2-1\right|+\left|-1+1\right|\)
\(A=\left|1-1\right|+\left|0\right|\)
\(A=0+0\)
\(A=0\)
b) \(A=0\) khi:
\(\Rightarrow\left|x^2-1\right|+\left|x+1\right|=0\)
\(\Rightarrow\left|x^2-1^2\right|+\left|x+1\right|=0\)
\(\Rightarrow\left|x+1\right|\cdot\left|x-1\right|+\left|x+1\right|=0\)
\(\Rightarrow\left|x+1\right|\left(\left|x-1\right|+1\right)=0\)
Mà: \(\left|x-1\right|+1\ge1>0\)
\(\Rightarrow\left|x+1\right|=0\)
\(\Rightarrow x=-1\)
Vậy: ...
a) x = -1 thì
A = |(-1)² - 1| + |-1 + 1| = 0
b) Để A = 0 thì |x² - 1| = 0 và |x + 1| = 0
*) |x² - 1| = 0
x² - 1 = 0
x² = 1
x = 1 hoặc x = -1 (1)
*) |x + 1| = 0
x + 1 = 0
x = -1 (2)
Từ (1) và (2) ⇒ x = -1
Vậy x = -1 thì A = 0
a: Thay x=2 vào B, ta được:
\(B=\dfrac{2}{\sqrt{2}-1}=2\sqrt{2}+2\)
\(a,P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2-\sqrt{x}}{\sqrt{x}}=\dfrac{-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{-2}{\sqrt{x}+2}\\ P=-\dfrac{3}{5}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\\ \Leftrightarrow3\sqrt{x}+6=10\Leftrightarrow\sqrt{x}=\dfrac{4}{3}\Leftrightarrow x=\dfrac{16}{9}\left(tm\right)\)
\(P=-\dfrac{3}{5}\) sao suy ra đc \(\dfrac{2}{\sqrt{x}+2}=\dfrac{3}{5}\) thế
a: \(A=\sqrt{x}+1+\sqrt{x}+1=2\sqrt{x}+2\)
b: Để A=6 thì \(2\sqrt{x}+2=6\)
=>x=4
Để A = 0 thì |x² - 1| = 0 và |x + 1| = 0
*) |x² - 1| = 0
x² - 1 = 0
x² = 1
x = 1 hoặc x = -1 (1)
*) |x + 1| = 0
x + 1 = 0
x = -1 (2)
Từ (1) và (2) ⇒ x = -1
Vậy x = -1 thì A = 0