cho tam giác ABC có đường AH, trung tuyến AM. Biết BH=9cm, HC=16cm. Tính tan\(\widehat{HAM}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông tại A, có đường cao AH:
\(AH^2=BH.HC\\ \Leftrightarrow AH^2=9.16\\ \Leftrightarrow AH^2=144\\ \Leftrightarrow AH=12cm\)
Có AM là đường trung tuyến
\(\Rightarrow BM=MC=\dfrac{1}{2}BC=\dfrac{9+16}{2}=12,5cm\\ \Rightarrow HM=BM-BH=12,5-9=3,5cm\\ \Rightarrow\tan HAM=\dfrac{HM}{AH}=\dfrac{3,5}{12}\)
A B C H M
Ta có \(BC=BH+HC=9+16=25\)
Vì \(\Delta ABC\)vuông tại A có AM là trung tuyến \(\Rightarrow AM=MB=MC=\frac{BC}{2}=\frac{25}{2}\)
Ta có \(HM=MB-BH=\frac{25}{2}-9=\frac{7}{2}\)
\(sin\widehat{HAM}=\frac{HM}{MA}=\frac{7}{2}:\frac{25}{2}=\frac{7}{25}\)
\(cos\widehat{HAM}=\frac{AH}{AM}=12:\frac{25}{2}=\frac{24}{25}\)
\(tan\widehat{HAM}=\frac{HM}{HA}=\frac{7}{2}:12=\frac{7}{24}\)
\(cot\widehat{HAM}=\frac{HA}{HM}=\frac{24}{7}\)
a, HA^2=HB.HC
Xet tg AHB va tg AHC
Có: H chung
Va góc HCA= góc ABH ( phụ với Â)
=>Tam giác AHB đồng dạng tam giác AHC
=> AH/BH=HC/AH
=>đpcm
b, Ta có: AH/BH=HC/AH
=>AH^2=BH.HC
=>AH^2=144
=>AH=12
*Tính AC
Áp dụng định lý Pi-ta-go:
AC^2=AH^2+HC^2
AC^2=144+256
AC=20cm
*Tính AB
Áp dụng định lý Pi-ta-go:
AB^2=BH^2+AH^2
AB^2=81+144
AB^2=225
AB=15cm
Với BH = 9cm, HC = 16cm => BC = BH + HC = 9 + 16 = 25 cm
Ta có: A H 2 = HB.HC (cmt)
=> A H 2 = 9.16 = 144 => AH = 12cm
Nên diện tích tam giác ABC là S A B C = 1 2 .AH.BC = 1 2 .12.25 = 150 c m 2
Đáp án: C
a,
Xét Δ AHB và Δ CAB, có :
\(\widehat{AHB}=\widehat{CAB}=90^o\)
\(\widehat{ABH}=\widehat{CBA}\) (góc chung)
=> Δ AHB ∾ Δ CAB (g.g)
=> \(\dfrac{AH}{CA}=\dfrac{HB}{AB}\)
=> \(\dfrac{AB}{CA}=\dfrac{HB}{AH}\)
Xét Δ AHB và Δ CHA, có :
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\dfrac{AB}{CA}=\dfrac{HB}{AH}\) (cmt)
=> Δ AHB ∾ Δ CHA (g.g)
=> \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)
=> \(AH^2=HB.CH\)
b, Ta có : \(AH^2=BH.CH\) (cmt)
=> \(AH^2=4.9\)
=> \(AH^2=36\)
=> AH = 6
Xét Δ AHB, có :
\(AB^2=AH^2+BH^2\)
=> \(AB^2=6^2+4^2\)
=> \(AB^2=52\)
=> AB = 7,2 (cm)
Xét Δ AHC, có :
\(AC^2=AH^2+CH^2\)
=> \(AC^2=6^2+9^2\)
=> \(AC^2=117\)
=> AC = 10,8 (cm)
Xét Δ ABC, có :
\(BC^2=AB^2+AC^2\)
=> \(BC^2=7,2^2+10,8^2\)
=> \(BC^2=168,48\)
=> BC = 12,9 (cm)
Ta có : MC = \(\dfrac{1}{2}BC\) (M là trung điểm BC do có đường trung tuyến AM)
=> MC = 6,45 (cm)
Ta có : BC = BH + HM + MC
=> 12,9 = 4 + HM + 6,45
=> HM = 12,9 - 4 - 6,45
=> HM = 2,45 (cm)
Xét Δ AMH vuông tại H, có :
\(S_{\Delta AMH}=\dfrac{1}{2}AH.HM\)
=> \(S_{\Delta AMH}=\dfrac{1}{2}.6.2,45\)
=> \(S_{\Delta AMH}=7,35\left(cm\right)\)
a , Δ A B C , A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H , H ⏜ = 90 0 g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b , Δ A B C , A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2