Tìm x
a) (x-1/2)^3=1/27
b) (x-1/2)^2=4/25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x+\dfrac{4}{9}=\dfrac{5}{27}\)
\(x=\dfrac{5}{27}-\dfrac{4}{9}\)
\(x=-\dfrac{7}{27}\)
b) \(x-\dfrac{4}{11}=\dfrac{7}{33}\)
\(x=\dfrac{7}{33}+\dfrac{4}{11}\)
\(x=\dfrac{19}{33}\)
c) \(\dfrac{8}{5}-x=\dfrac{1}{3}\times\dfrac{2}{5}\)
\(\dfrac{8}{5}-x=\dfrac{2}{15}\)
\(x=\dfrac{8}{5}-\dfrac{2}{15}\)
\(x=\dfrac{22}{15}\)
d) \(x-\dfrac{3}{4}=\dfrac{1}{2}+\dfrac{2}{6}\)
\(x-\dfrac{3}{4}=\dfrac{5}{6}\)
\(x=\dfrac{5}{6}+\dfrac{3}{4}\)
\(z=\dfrac{19}{12}\)
a) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)^2=27.\)
\(\Leftrightarrow x^3+27-x\left(x^2-4x+4\right)-27=0.\)
\(\Leftrightarrow x^3-x^3+4x^2-4x=0.\)
\(\Leftrightarrow4x\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=0.\\x-1=0.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0.\\x=1.\end{matrix}\right.\)
Vậy \(S=\left\{0;1\right\}.\)
\(a,=x^2-4x+4-\dfrac{15}{4}=\left(x-2\right)^2-\dfrac{15}{4}=\left(x-2-\dfrac{\sqrt{15}}{2}\right)\left(x-2+\dfrac{\sqrt{15}}{2}\right)\\ b,=?\\ c,\Rightarrow x^2+7x-8=0\\ \Rightarrow\left(x+8\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\\ d,Sửa:x^3-3x^2=-27+9x\\ \Rightarrow x^3-3x^2+9x-27=0\\ \Rightarrow x^2\left(x-3\right)+9\left(x-3\right)=0\\ \Rightarrow\left(x^2+9\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-9\left(vô.lí\right)\\x=3\end{matrix}\right.\\ \Rightarrow x=3\\ e,\Rightarrow x\left(x-3\right)-7x+21=0\\ \Rightarrow x\left(x-3\right)-7\left(x-3\right)=0\\ \Rightarrow\left(x-7\right)\left(x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\\ f,\Rightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ \Rightarrow x=2\)
\(g,\Rightarrow x^2-4x+4=0\\ \Rightarrow\left(x-2\right)^2=0\\ \Rightarrow x=2\\ h,Sửa:x^3-x^2+x=1\\ \Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=1\end{matrix}\right.\\ \Rightarrow x=1\)
\(a,x+\dfrac{2}{5}=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}-\dfrac{2}{5}\)
\(x=\dfrac{5}{10}-\dfrac{4}{10}\)
\(\Rightarrow x=....\)
\(a,x+\dfrac{2}{5}=\dfrac{1}{2}\\ \Rightarrow x=\dfrac{1}{2}-\dfrac{2}{5}=\dfrac{5-4}{10}=\dfrac{1}{10}\)
\(b,x-\dfrac{2}{5}=\dfrac{1}{7}\\ \Rightarrow x=\dfrac{1}{7}+\dfrac{2}{5}=\dfrac{5+14}{35}=\dfrac{19}{35}\)
\(c,x\cdot\dfrac{3}{4}=\dfrac{9}{20}\\ \Rightarrow x=\dfrac{9}{20}:\dfrac{3}{4}=\dfrac{9}{20}\cdot\dfrac{4}{3}=\dfrac{3\cdot1}{5\cdot1}=\dfrac{3}{5}\)
\(d,x:\dfrac{1}{7}=14\\ \Rightarrow x=14\cdot\dfrac{1}{7}=\dfrac{14}{7}=2\)
\(e,\dfrac{2}{3}-x=\dfrac{1}{5}\\ \Rightarrow x=\dfrac{2}{3}-\dfrac{1}{5}=\dfrac{10-3}{15}=\dfrac{7}{15}\)
\(f,\dfrac{4}{15}:x=\dfrac{12}{25}\\ \Rightarrow x=\dfrac{4}{15}:\dfrac{12}{25}=\dfrac{4}{15}\cdot\dfrac{25}{12}=\dfrac{1\cdot5}{3\cdot3}=\dfrac{5}{9}\)
2: Tìm x
a) Ta có: x+25=40
nên x=40-25=15
Vậy: x=15
b) Ta có: 198-(x+4)=120
\(\Leftrightarrow x+4=198-120=78\)
hay x=78-4=74
Vậy: x=74
c) Ta có: \(\left(2x-7\right)\cdot3=125\)
\(\Leftrightarrow2x-7=\dfrac{125}{3}\)
\(\Leftrightarrow2x=\dfrac{125}{3}+7=\dfrac{125}{3}+\dfrac{21}{3}=\dfrac{146}{3}\)
\(\Leftrightarrow x=\dfrac{146}{3}:2=\dfrac{146}{6}=\dfrac{73}{3}\)
Vậy: \(x=\dfrac{73}{3}\)
d) Ta có: \(x+16⋮x+1\)
\(\Leftrightarrow x+1+15⋮x+1\)
mà \(x+1⋮x+1\)
nên \(15⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(15\right)\)
\(\Leftrightarrow x+1\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
hay \(x\in\left\{0;-2;2;-4;4;-6;14;-16\right\}\)
Vậy: \(x\in\left\{0;-2;2;-4;4;-6;14;-16\right\}\)
\(a,x+25=40\\ \Rightarrow x=40-25\\ \Rightarrow x=15\\ b,198-\left(x+4\right)=120\\ \Rightarrow-\left(x+4\right)=120-198\\ \Rightarrow-\left(x+4\right)=-78\\ \Rightarrow x+4=78\\ \Rightarrow x=78-4\\ \Rightarrow x=74\\ c,\left(2x-7\right).3=125\\ \Rightarrow2x-7=\dfrac{125}{3}\\ \Rightarrow2x=\dfrac{125}{3}+7\\ \Rightarrow2x=\dfrac{146}{3}\\ \Rightarrow x=\dfrac{146}{3}:2\Rightarrow x=\dfrac{73}{3}\\ d,\left(x+16\right)⋮\left(x+1\right)\\ \Rightarrow\left[\left(x+1\right)+15\right]⋮\left(x+1\right)\\ mà:\left(x+1\right)⋮\left(x+1\right)\\ \Rightarrow15⋮\left(x+1\right)\\ \Rightarrow\left(x+1\right)\inƯ\left(15\right)\\ \Rightarrow\left(x+1\right)\in\left\{-15;-1;1;15\right\}\\ \Rightarrow x\in\left\{-16;-2;0;14\right\}\)
Tự kết luận nhé bạn
Bài 3:
Gọi số nhóm là x
Theo đề, ta có: \(x\in\left\{1;2;3;4;6;9;12;18;36\right\}\)
mà 2<x<6
nên \(x\in\left\{3;4\right\}\)
Vậy: Có 2 cách chia nhóm
a) 25 - x = 12 + 6 =18
x=25-18=7 Vậy x=7
b) 7 + 2 x ( x -3 ) = 11
2.(x-3)=11-7=4
x-3=4:2=2
x=3+2=5
c) 102 : ( 2.x + 13) : 4) = 6
(2.x+13):4=102:6=17
2.x+13=17.4=68
2.x=68-13=55
x=27,5 Vậy x=27,5
Bài 3:
Gọi số nhóm là x
Theo đề, ta có: x∈{1;2;3;4;6;9;12;18;36}x∈{1;2;3;4;6;9;12;18;36}
mà 2<x<6
nên x∈{3;4}x∈{3;4}
Vậy: Có 2 cách chia nhóm
còn bài 1 chắc bn làm đc nha tick mk nha
a) \(\left(2x-1\right)^2-25=0\)
⇔ \(\left(2x-1\right)^2-5^2=0\)
⇔ \(\left(2x-1-5\right)\left(2x-1+5\right)=0\)
⇒ \(2x-1-5=0\) hoặc \(2x-1+5=0\)
⇔ \(x=3\) hoặc \(x=-2\)
Bài 1: Tìm x
a) (2x-1) ² - 25 = 0
<=> (2x-1)2 = 25
<=> 2x-1 = 5 hay 2x-1 =-5
<=> 2x= 6 hay 2x=-4
<=> x=3 hay x= -2
Vậy S={3; -2}
b) 3x (x-1) + x - 1 = 0
<=> (x-1)(3x+1)=0
<=> x-1=0 hay 3x+1=0
<=> x=1 hay 3x=-1
<=> x=1 hay x=\(\dfrac{-1}{3}\)
Vậy S={1;\(\dfrac{-1}{3}\)}
c) 2(x+3) - x ² - 3x = 0
<=> 2(x+3)- x(x+3)=0
<=> (x+3)(2-x)=0
<=> x+3=0 hay 2-x=0
<=> x=-3 hay x=2
Vậy S={-3;2}
d) x(x - 2) + 3x - 6 = 0
<=> x(x-2)+3(x-2)=0
<=> (x-2)(x+3)=0
<=> x-2=0 hay x+3=0
<=> x=2 hay x=-3
Vậy S={2;-3}
e) 4x ² - 4x +1 = 0
<=> (2x-1)2=0
<=> 2x-1=0
<=> 2x=1
<=> x=\(\dfrac{1}{2}\)
Vậy S={\(\dfrac{1}{2}\)}
f) x +5x2 = 0
<=> x(1+5x)=0
<=>x=0 hay 1+5x=0
<=> x=0 hay 5x=-1
<=> x=0 hay x= \(\dfrac{-1}{5}\)
Vậy S={0;\(\dfrac{-1}{5}\)}
g) x ²+ 2x -3 = 0
<=> x2-x+3x-3=0
<=> x(x-1)+3(x-1)=0
<=> (x-1)(x+3)=0
<=> x-1=0 hay x+3=0
<=> x=1 hay x=-3
Vậy S={1;-3}
a) \(8x^3+27=\left(2x+3\right)\left(4x^2-6x+9\right)\)
b) \(4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-1-y\right)\left(2x-1+y\right)\)
c) \(x^4-2x^3+x^2-2x=x^3\left(x-2\right)+x\left(x-2\right)=x\left(x-2\right)\left(x^2-1\right)=x\left(x-2\right)\left(x-1\right)\left(x+1\right)\)
d) \(x^2-4y^2+2x+4y=\left(x-2y\right)\left(x+2y\right)+2\left(x+2y\right)=\left(x+2y\right)\left(x-2y+2\right)\)
a: Ta có: \(4\left(x+1\right)^2+\left(2x+1\right)^2-8\left(x-1\right)\left(x+1\right)-11=0\)
\(\Leftrightarrow4x^2+8x+4+4x^2+4x+1-8x^2+8-11=0\)
\(\Leftrightarrow12x=-2\)
hay \(x=-\dfrac{1}{6}\)
b: Ta có: \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)-1=0\)
\(\Leftrightarrow x^2+6x+9-x^2-4x+32-1=0\)
\(\Leftrightarrow2x=-40\)
hay x=-20
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
<=>\(x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
b)
\(\left(x-\frac{1}{2}\right)^2=\frac{4}{25}\)
\(\orbr{\begin{cases}x-\frac{1}{2}=\frac{2}{5}\\x-\frac{1}{2}=-\frac{2}{5}\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{2}{5}+\frac{1}{2}=\frac{9}{10}\\x=-\frac{2}{5}+\frac{1}{2}=\frac{1}{10}\end{cases}}\)
a)(x-1/2)3=1/27
x-1/2=1/3
x=5/6
b)(x-1/2)2=4/25
x-1/2=2/5
x=9/10