K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2023

ko có kết quả

 

DD
4 tháng 10 2021

Chia \(X\)thành các tập nhỏ \(\left\{1,2021\right\},\left\{2,2020\right\},...,\left\{1010,1012\right\},\left\{1011\right\}\)(có \(1011\)tập nhỏ) 

Do \(\left|A\right|+\left|B\right|>2022\)\(\left|X\right|=2021\)nên tồn tại ít nhất \(3\)phần tử của hai tập \(A,B\)thuộc cùng một tập nhỏ trên. 

Khi đó dễ dàng chọn ra hai phần tử thỏa mãn ycbt. 

6 tháng 7 2016

các bạn ơi, giúp mình với, mình đang cần gấp!

6 tháng 7 2016

\(M=\frac{x+3}{7+x}=\frac{x+3}{x+7}\)

(*) M>0 <=> x+3 và x+7 cùng dấu

\(\left(+\right)\hept{\begin{cases}x+3< 0\\x+7< 0\end{cases}=>\hept{\begin{cases}x< -3\\x< -7\end{cases}=>x< -7}}\)

\(\left(+\right)\hept{\begin{cases}x+3>0\\x+7>0\end{cases}=>\hept{\begin{cases}x>-3\\x>-7\end{cases}=>x>-3}}\)

Vậy x<-7 hoặc x>-3 thì thỏa mãn M>0

(*)M<0 <=> x+3 và x+7 trái dấu

Mà x+3<x+7

\(=>\hept{\begin{cases}x+3< 0\\x+7>0\end{cases}=>\hept{\begin{cases}x< -3\\x>-7\end{cases}=>-7< x< -3}}\)

Vậy......

(*)M nguyên <=> x+3 chia hết cho x+7

<=>(x+7)-4 chia hết cho x+7

Mà x+7 chia hết cho x+7

=>-4 chia hết cho x+7=>x+7 E Ư(-4)={...},tới đây bn đã có thể tự làm tiếp rồi nhé

(*)M>1 \(< =>M=\frac{x+3}{x+7}>1< =>\frac{x+3}{x+7}-1>0< =>\frac{x+3-x-7}{x+7}>0< =>\frac{-4}{x+7}>0< =>x< -7\)

7 tháng 2 2022

a) \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\left(đk:a,b\ne0,a\ne b\right)\Leftrightarrow\dfrac{b-a}{ab}=\dfrac{1}{a-b}\)

\(\Leftrightarrow-\left(a-b\right)^2=ab\Leftrightarrow a^2-ab+b^2=0\)

\(\Leftrightarrow\left(a^2-ab+\dfrac{1}{4}b^2\right)+\dfrac{3}{4}b^2=0\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2+\dfrac{3}{4}b^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a-\dfrac{1}{2}b=0\\\dfrac{3}{4}b^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}b\\b=0\end{matrix}\right.\) \(\Leftrightarrow a=b=0\left(ktm\right)\)

Vậy k có a,b thõa mãn 

b) \(\dfrac{5}{2a}=\dfrac{1}{6}+\dfrac{b}{3}\left(a\ne0\right)\Leftrightarrow\dfrac{2b+1}{6}-\dfrac{5}{2a}=0\Leftrightarrow\dfrac{a\left(2b+1\right)-15}{6a}=0\)

\(\Leftrightarrow a\left(2b+1\right)-15=0\Leftrightarrow a\left(2b+1\right)=15\)

Do \(a,b\in Z,a\ne0\) nên ta có bảng sau:

a1-115-153-35-5
2b+115-151-15-53-3
b7(tm)-8(tm)0(tm-1(tm)2(tm)-3(tm)1(tm)-2(tm)

Vậy...

7 tháng 2 2022

Cái ( tm ) là gì vậy 

 

15 tháng 9 2019

Bài 1 :

Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
    = 2(2+n)+ m(2+n)
    = 4+ 2n+ 2m+ mn
    = 4+ m+ m+ n+ n+ mn
    = (4+ m+ n) +(m +n +mn)
    = (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b .dpcm

~ Hok tốt ~

15 tháng 9 2019

1)\(\hept{\begin{cases}a>2\\b>2\end{cases}}\Rightarrow\hept{\begin{cases}\frac{1}{a}< \frac{1}{2}\\\frac{1}{b}< \frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}< 1\Leftrightarrow\frac{a+b}{ab}< 1\Leftrightarrow a+b< ab\)

2) \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)