Tìm x biết:
\(\left(2x-3\right)^3\)=\(\left(2x-3\right)^5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NX: 2x+3; 5(2x+3) và 2(2x+3) cùng dấu
+TH1: 2x+3 \(\ge\)0 => x \(\ge\frac{-3}{2}\)
=> 5(2x+3), 2(2x+3) \(\ge\)0
=> |5(2x+3)| = 5(2x+3); |2(2x+3)| = 2(2x+3); |2x+3| = 2x+3
=> (2x+3)(5+2+1) = 16
=> 2x+3 = 2
=> 2x = -1
=> x = -1/2 (t/m)
+ TH2: 2x+3 < 0 => x < -3/2
cmtt => -5(2x+3) - 2(2x+3) - (2x+3) = 16
=> (2x+3)(-5-2-1) = 16
=> 2x+3 = -2
=> 2x = -5
=> x = -5/2 (t/m)
/8(2x+3/ = 16
/2x+3/=2
2x+3=2 hoặc 2x+3=-2
2x=-1 hoặc 2x=-5
x=-1/2 hoặc x=-5/2
bạn trả lời nhé
1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)
=>-13x=0
=>x=0
2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
=>3x=13
=>x=13/3
3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)
=>-2x^2=0
=>x=0
4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
=>-8x=6-14=-8
=>x=1
`1)2x(x-5)-(3x+2x^2)=0`
`<=>2x^2-10x-3x-2x^2=0`
`<=>-13x=0`
`<=>x=0`
___________________________________________________
`2)x(5-2x)+2x(x-1)=13`
`<=>5x-2x^2+2x^2-2x=13`
`<=>3x=13<=>x=13/3`
___________________________________________________
`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`
`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`
`<=>x=0`
___________________________________________________
`4)5x(x-1)-(x+2)(5x-7)=0`
`<=>5x^2-5x-5x^2+7x-10x+14=0`
`<=>-8x=-14`
`<=>x=7/4`
___________________________________________________
`5)6x^2-(2x-3)(3x+2)=1`
`<=>6x^2-6x^2-4x+9x+6=1`
`<=>5x=-5<=>x=-1`
___________________________________________________
`6)2x(1-x)+5=9-2x^2`
`<=>2x-2x^2+5=9-2x^2`
`<=>2x=4<=>x=2`
\(\Leftrightarrow\left(8x^3-12x^2+6x-1\right)-\left(8x^3-6x^2\right)=5\)
\(\Leftrightarrow8x^3-12x^2+6x-1-8x^3+6x^2=5\)
\(\Leftrightarrow6x^2-6x+6=0\)
\(\Leftrightarrow x^2-x+1=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)
Do \(\left(x-\dfrac{1}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0;\forall x\)
\(\Rightarrow\) Phương trình vô nghiệm
Ta có: \(\left(2x-1\right)^3-2x\left(4x^2-3x\right)=5\)
\(\Leftrightarrow8x^3-6x^2+12x-1-8x^3+6x^2=5\)
\(\Leftrightarrow12x=6\)
hay \(x=\dfrac{1}{2}\)
a: \(\left(\sqrt{3}\right)^x=243\)
=>\(3^{\dfrac{1}{2}\cdot x}=3^5\)
=>\(\dfrac{1}{2}\cdot x=5\)
=>x=10
b: \(0,1^x=1000\)
=>\(\left(\dfrac{1}{10}\right)^x=1000\)
=>\(10^{-x}=10^3\)
=>-x=3
=>x=-3
c: \(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)
=>\(\left(0,2\right)^{x+3}< 0,2\)
=>x+3>1
=>x>-2
d: \(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)
=>\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{3}{5}\right)^{-2}\)
=>2x+1<-2
=>2x<-3
=>\(x< -\dfrac{3}{2}\)
e: \(5^{x-1}+5^{x+2}=3\)
=>\(5^x\cdot\dfrac{1}{5}+5^x\cdot25=3\)
=>\(5^x=\dfrac{3}{25,2}=\dfrac{1}{8,4}=\dfrac{10}{84}=\dfrac{5}{42}\)
=>\(x=log_5\left(\dfrac{5}{42}\right)=1-log_542\)
3(x-2)-4(2x+1)-5(2x+3)=50
3x-6-8x-4-10x-13=50
-15x-23=50
-15x=50+23
-15x=73
x=73:(-15)
x=\(-\frac{73}{15}\)
a) \(\left(x+3\right)^2-\left(2x+1\right).\left(2x-1\right)=22\)
\(\Leftrightarrow x^2+6x+9-\left(4x^2-1\right)=22\)
\(\Leftrightarrow x^2+6x+9-4x^2+1=22\)
\(\Leftrightarrow-3x^2+6x-12=0\)
\(\Leftrightarrow x^2-2x+4=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+3=0\)
\(\Leftrightarrow\left(x-1\right)^2+3=0\)(vô lý)
b) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\Leftrightarrow16x^2-9-\left(16x^2-40x+25\right)=46\)
\(\Leftrightarrow16x^2-9-16x^2+40x-25-46=0\)
\(\Leftrightarrow40x-80=0\)
\(\Leftrightarrow x=2\)
a/ \(x=\dfrac{-5}{12}\)
b/ \(x\approx-1,9526\)
c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)
d/ \(x=\dfrac{-20}{13}\)
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)
\((2x-3)^3=(2x-3)^5\\\Rightarrow (2x-3)^3-(2x-3)^5=0\\\Rightarrow (2x-3)^3[1-(2x-3)^2]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x-3\right)^3=0\\1-\left(2x-3\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\\left(2x-3\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x-3=1\\2x-3=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\2x=4\\2x=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=1\end{matrix}\right.\)
\(Vậy:x\in\left\{1;\dfrac{3}{2};2\right\}\)