cho tam giác abc có ab=16 ac=14 gócb=60 độ.tính diện tích tam giác abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ AH vuông góc với BC
Ta có HB=1/2AB SUY RA HB=8cm
do đó bc=10cm
Tham khảo:
Đặt \(a = BC,b = AC,c = AB.\)
a) Áp dụng công thức \(S = \frac{1}{2}bc\sin A\), ta có: \({S_{ABC}} = \frac{1}{2}.8.6.\sin {60^o} = \frac{1}{2}.8.6.\frac{{\sqrt 3 }}{2} = 12\sqrt 3 \)
b) Áp dụng định lí cosin cho tam giác ABC ta được:
\(\begin{array}{l}B{C^2} = {a^2} = {8^2} + {6^2} - 2.8.6.\cos {60^o} = 52\\ \Rightarrow BC = 2\sqrt {13} \end{array}\)
Xét tam giác IBC ta có:
Góc \(\widehat {BIC} = 2.\widehat {BAC} = {120^o}\)(góc ở tâm và góc nội tiếp cùng chắn một cung)
\(IB = IC = R = \frac{a}{{2\sin A}} = \frac{{2\sqrt {13} }}{{2.\frac{{\sqrt 3 }}{2}}} = \frac{{2\sqrt {39} }}{3}.\)
\( \Rightarrow {S_{IBC}} = \frac{1}{2}.\frac{{2\sqrt {39} }}{3}.\frac{{2\sqrt {39} }}{3}\sin {120^o} = \frac{{13\sqrt 3 }}{3}.\)
trong tam giac vuong ABH ta co \(AH=\sin B\cdot AB\) \(\Rightarrow AH=8\sqrt{3}\)
\(BH=\cos B\cdot AB=8\)
trong tam giac AHC co \(HC^2+AH^2=AC^2\Rightarrow HC^2=14^2-\left(8\sqrt{3}\right)^2=4\Rightarrow HC=2\)
\(\Rightarrow BC=BH+HC=8+2=10\)
\(\Rightarrow SABC=\frac{1}{2}BC\cdot AH=\frac{1}{2}\cdot10\cdot8\sqrt{3}=40\sqrt{3}\)