K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
6 tháng 10 2023

Trước khi bị gãy, cây cao số mét là : 1,75 + 3 = 4,75 (m)

10 tháng 12 2021

Phần gãy dài \(\sqrt{6^2+8^2}=10(m)\)

Vậy cây cao \(10+6=16(m)\)

10 tháng 5 2022

Bài 13;Một cây xanh mọc đơn độc. 
Trong một trận bão lớn, cây bị gãy 
ngang (hình vẽ). Ngọn cây chạm mặt 
đất cách gốc cây <tex>3m</tex>. Đoạn thân cây 
còn lại người ta đo được <tex>4m</tex>. Hỏi lúc 
đầu cây cao bao nhiêu mét?

24 tháng 8 2022

chiu

 

NV
11 tháng 1

Giả sử gốc là điểm A, điểm gãy là B và điểm ngọn chạm đất là C, ta có tam giác ABC vuông tại A

Trong đó \(AC=3m\) ; \(AB+BC=9\left(m\right)\) 

Áp dụng định lý Pitago:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AB^2+3^2=\left(9-AB\right)^2\)

\(\Leftrightarrow9=81-18AB\)

\(\Rightarrow AB=4\left(m\right)\)

Vậy điểm gãy cách gốc 4m

Bài 6: 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE

hay ΔBAE cân tại B

b: Ta có: BA=BE

DA=DE

Do đó: BD là đườg trung trực của AE

hay BD\(\perp\)AE

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE
\(\widehat{ADF}=\widehat{EDC}\)

Do đó:ΔADF=ΔEDC

Suy ra: DF=DC

mà DC>DE

nên DE<DF

21 tháng 8 2021

Gọi tam giác tại bởi phần thân cây bị gãy với phần cây còn lại và mặt đất là △ ABC vuông tại A. Ta có

   cos 20 = 7.5 / cạnh huyền 

⇒ cạnh huyền = \(\dfrac{7,5}{cos20}\)\(\approx\) 8 ( m )

Áp dụng định lý Py-ta-go ta có:

phần bị gãy của cây cau là : \(\sqrt{8^2-7,5^2}\) = 2.78 ( m )

⇒ Chiều cao cây cau lúc đầu là : 8 + 2.78 =10.78 ( m )

21 tháng 8 2021

Bạn làm cho mk 1 cách khác đi