K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

17 tháng 11 2019

13 tháng 8 2017

Đáp án B

11 tháng 1 2021

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

a. Áp dụng BĐT Cô-si:

$x^4+9\geq 6x^2$

$y^4+9\geq 6y^2$

$\Rightarrow x^4+y^4+18\geq 6(x^2+y^2)$

$A+18\geq 36$

$A\geq 18$

Vậy GTNN của $A$ là $18$ khi $x^2=y^2=3$

b.

$(x-y)^2\geq 0$

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$

$\Leftrightarrow 12\geq (x+y)^2$

$\Rightarrow B=x+y\leq \sqrt{12}$. Vậy $B$ max bằng $\sqrt{12}$ khi $x=y=\sqrt{3}$

$(x-y)^2\geq 0$

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 6\geq 2C$

$\Leftrightarrow C\leq 3$. Vậy $C_{\max}=3$. Giá trị này đạt tại $x=y=-\sqrt{3}$

15 tháng 10 2023

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

15 tháng 10 2023

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

NV
5 tháng 2 2021

Đặt \(P=x+y\Rightarrow P^2=\left(x+y\right)^2\le2\left(x^2+y^2\right)=8\)

\(\Rightarrow-2\sqrt{2}\le P\le2\sqrt{2}\)

\(P_{min}=-2\sqrt{2}\) khi \(x=y=-\sqrt{2}\)

\(P_{max}=2\sqrt{2}\) khi \(x=y=\sqrt{2}\)

19 tháng 6 2018

Đáp án A