K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

đơn giản thôi bạn: 
\(\frac{1}{x-y+1}=-5\Leftrightarrow1=\left(-5\right)\left(x-y+1\right)\Leftrightarrow x-y+1=-\frac{1}{5}\Leftrightarrow x-y=-\frac{6}{5}\)

22 tháng 7 2017

\(\frac{1}{x-y+1}\)= -5 <=> \(\frac{1}{-5}\)= x-y+1 

<=> x-y = -1/5 -1 = -6/5

26 tháng 4 2020

Đặt \(a=\frac{1}{x-1}\left(x\ne1\right);\frac{1}{y+1}=b\left(y\ne-1\right)\)

\(\Rightarrow\hept{\begin{cases}2a+b=7\\5a-2b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x-1=\frac{1}{2}\\y+1=\frac{1}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=1,5\\y=\frac{-2}{3}\end{cases}}}\)

16 tháng 9 2018

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)( Bất đẳng thức Svac-xơ )

Dấu = xảy ra khi \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\)

23 tháng 6 2020

BĐT trên 

\(< =>\frac{xy+yz+xz}{xyz}\ge\frac{9}{x+y+z}\)

\(< =>\left(x+y+z\right)\left(xy+yz+xz\right)\ge9xyz\)

Áp dụng BĐT cô si cho 3 số :

\(x+y+z\ge3\sqrt[3]{xyz}\)

\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)

Nhân vế với vế : \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}=9xyz\)

Nên ta có đpcm

7 tháng 8 2018

mik ko bt

7 tháng 8 2018

có ai giúc mk ko mk đăng nhiều lần rồi răng ko ai chịu giúc nhỉ 

19 tháng 11 2019

Bài này ko khó lắm đâu bn ơi

19 tháng 11 2019

lili Nếu biết trước điểm rơi thì không khó bạn ạ.Bạn biết cách đóan bài này ko,chỉ mình đi !

2 tháng 2 2017

Ta có: \(\left(x+y\right)^2=\left(x-y\right)^2+4xy\)

Thay số ta được:

\(\left(x+y\right)^2=4^2+4.5\)

\(\Rightarrow\left(x+y\right)^2=16+20=36\)

\(\Rightarrow x+y=\sqrt{36}=6\)

Vậy: \(x+y=6\)

3 tháng 2 2017

tu x-y=4suy ra y=x-4
thay vao xy=5suy ra x(x-4)=5
suy ra x^2-4x+4=9
suy ra (x-2)^2=9
suy ra x-2=+-3
vi x<0 suy ra x=-3+2=-1
suy ra y=x-4=-1-4=-5
suy ra x+y=-1+-5=-6

NV
22 tháng 3 2022

\(\dfrac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}=1\)

Áp dụng BĐT Bunhiacopxki:

\(\left(\dfrac{2}{3}+1+\dfrac{1}{3}\right)\left(\dfrac{3}{2}x^2+\left(y+\dfrac{z}{2}\right)^2+\dfrac{3z^2}{4}\right)\ge\left(\sqrt{\dfrac{2}{3}.\dfrac{3}{2}x^2}+\sqrt{1.\left(y+\dfrac{z}{2}\right)^2}+\sqrt{\dfrac{1}{3}.\dfrac{3z^2}{4}}\right)^2\)

\(\Leftrightarrow2.1\ge\left(x+y+\dfrac{z}{2}+\dfrac{z}{2}\right)^2=\left(x+y+z\right)^2\)

\(\Rightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

22 tháng 3 2022

\(\frac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow\left(x+y+z\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

14 tháng 11 2023

x:5=900 - 865

x;5=135

x=135x5

x=675

vậy x = 675

14 tháng 11 2023

865+x:5=900

        x:5 = 900 - 865

        x:5 = 35

          x  = 35:5

          x  = 7

Vậy x = 7