Tìm n để b.thức có giá trị nguyên
G= n^3 - n^2 - 3/ n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
để A∈Z
\(=>n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(=>\left\{{}\begin{matrix}n+3=-1\\n+3=1\end{matrix}\right.=>\left\{{}\begin{matrix}n=-4\\n=-2\end{matrix}\right.\)
vậy \(n\in\left\{-4;-2\right\}\) thì \(A\in Z\)
`a)A in ZZ`
`=>n+1 vdots n-3`
`=>n-3+4 vdots n-3`
`=>4 vdots n-3`
`=>n-3 in Ư(4)={+-1,+-2,+-4}`
`=>n in {2,4,5,1,-1,7}`
Vậy `n in {2,4,5,1,-1,7}` thì `A in ZZ`
b) để A là phân số thì A `cancel{in} Z`
`=>n ne {2,4,5,1,-1,7}`
Vậy `n ne {2,4,5,1,-1,7}` thì A là phân số
a)Để A là số nguyên thì n+1 ⋮ n-3
⇒n+1 ⋮ n−3
⇒n−3+4 ⋮ n−3
⇒4 ⋮ n−3
⇒n-3 ∈ Ư(4)={±1,±2,±4}
⇒n ∈ {2,4,5,1,−1,7}
Vậy n ∈ {2,4,5,1,−1,7} thì A ∈ Z
b) Để A là phân số thì A ∈ Z
⇒n ≠ {2,4,5,1,−1,7}
Vậy n ≠ {2,4,5,1,−1,7} thì A là phân số
Chúc bạn học tốt!
a) \(A=\frac{3-n}{n+1}=\frac{4-1-n}{n+1}=\frac{4}{n+1}-1\inℤ\)mà \(n\inℤ\)suy ra \(n+1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)
\(\Leftrightarrow n\in\left\{-5,-3,-2,0,1,3\right\}\).
b) \(B=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\inℤ\)mà \(n\inℤ\)suy ra \(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Rightarrow n\in\left\{-1\right\}\)
c) \(C\inℤ\Rightarrow3C=\frac{6n+3}{3n+2}=\frac{6n+4-1}{3n+2}=2-\frac{1}{3n+2}\inℤ\) mà \(n\inℤ\)suy ra
.\(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)\(\Rightarrow n\in\left\{-1\right\}\)
Thử lại thỏa mãn.
a) Để A là phân số thì \(n-3\ne0\)
hay \(n\ne3\)
b) Để A=-1/2 thì \(\dfrac{7}{n-3}=\dfrac{-1}{2}\)
\(\Leftrightarrow-1\left(n-3\right)=14\)
\(\Leftrightarrow n-3=-14\)
hay n=-11(thỏa ĐK)
Vậy: Để A=-1/2 thì n=-11