4. Cho tam giác ABC có AB = AC, kẻ tia phân giác góc A cắt BC tại E. CMR:
ΔAEB = ΔAEC từ đó suy ra \(AE\perp BC\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, có AE là pg của ^BAC (gt) ; ^BAC = 60 (gt) => ^DAB = 30
xét tam giác ABC vuông tại C (gt) có ^BAC = 60 (gt) => ^CBA = 30
=> ^DAB = ^CBA
xét tam giác BDA và tam giác ACB có : AB chung
^BDA = ^ACB = 90
=> tam giác BDA = tam giác ACB (ch-gn)
=> AD = BC (Đn)
b, có : ^CBA = ^DAB = 30 (câu a)
=> tam giác BEA cân tại E (dh)
có EK là đường cao (gt)
=> EK đồng thời là đường trung tuyến của tam giác BEA (đl)
=> K là trung điểm của AB (đn)
=> BK = AK (đn)
c, kẻ BD cắt CA tại M
xét tam giác BMA có : AE _|_ BD ; BE _|_ CA; EK _|_ AB
=> AC;EK;BD đồng quy
Tự vẽ hình nha
a) ABD và EBD có: abd = ebd (bd la phân giác), BD chung
=> bằng nhau (cạnh huyền - góc nhọn)
=> AB = Be (2 cạnh tương ứng) => abe cân
b) ta có: AD = DE (vì tg ABD = tg EBD) mà DE < CD (Cạnh huyên là cạnh lớn nhất) nên AD < CD (ĐPCM)
a) Xét 2 tam giác vuông: ACD và AKD, có:
góc CAD = góc KAD (phân giác AE, gt)
AE là cạnh chung
=> tam giác ACD = tam giác AKD (cạnh huyền - góc nhọn)
=> AK = AC (2 cạnh tương ứng) (đpcm)
b) đề có nhầm ko bạn
\(\text{#TNam}\)
`a,` \(\text{Xét Tam giác ABD và Tam giác AED có:}\)
`AB = AE (g``t)`
\(\widehat{BAD}=\widehat{EAD} (\text {tia phân giác} \) \(\widehat{BAE})\)
`\text {AD chung}`
`=> \text {Tam giác ABD = Tam giác AED (c-g-c)}`
`b,`
\(\text{Vì Tam giác ABD = Tam giác AED (a)}\)
`->`\(\widehat{ADB}=\widehat{ADE} (\text {2 góc tương ứng})\)
`-> \text {AD là tia phân giác}` \(\widehat{BDE}\)
\(\text{Xét Tam giác ABC:}\)
`AC > AB (g``t)`
\(\text{Theo định lý của quan hệ giữa góc và cạnh đối diện trong 1 tam giác}\)
`->`\(\widehat{ABC}>\widehat{ACB}.\)
Để chứng minh ΔAEB = ΔAEC, ta có thể sử dụng nguyên lý cắt giao. Vì AB = AC và AE là tia phân giác góc A, nên ta có AE là đường trung trực của đoạn thẳng BC. Từ đó, ta có AE ⊥ BC. Vì AE là đường trung trực của đoạn thẳng BC, nên ta cũng có BE = EC. Như vậy, ta đã chứng minh được ΔAEB = ΔAEC.