cho các số thực không âm x,y,z từng đôi một khác nhau thỏa mãn (x+z)(y+z)=1
cm \(\frac{1}{\left(x-y\right)^2}\)+ \(\frac{1}{\left(x+z\right)^2}\)+ \(\frac{1}{\left(y+z\right)^2}\)lớn hơn hoặc bằng 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow3+\frac{y+z-2x}{x}=3+\frac{x+z-2y}{y}=3+\frac{x+y-2z}{z}\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
\(TH1:x+y+z=0\)
\(\Rightarrow x=-\left(y+z\right),y=-\left(x+z\right),z=-\left(x+y\right)\)
\(A=\left(1+\frac{-y-z}{y}\right).\left(1+\frac{-x-z}{z}\right).\left(1+\frac{-x-y}{x}\right)\)
\(A=-\left(\frac{z}{y}\cdot\frac{x}{z}\cdot\frac{y}{x}\right)=-1\)
\(TH2:x+y+z\ne0\)
\(\Rightarrow x=y=z\Rightarrow A=2^3=8\)
sai đề ròi: tớ làm 2 trường hợp luôn vì trường hợp x+y+z khác 0 thì A mới t/m thuộc N
mà đề là x+y+z khác 0 -.-
Ta có bất đẳng thức: \(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{8}{\left(a+b\right)^2}\)
Dấu \(=\)xảy ra khi \(a=b\).
Áp dụng ta được:
\(A=\frac{1}{\left(x+1\right)^2}+\frac{4}{\left(y+2\right)^2}+\frac{8}{\left(z+3\right)^2}=\frac{1}{\left(x+1\right)^2}+\frac{1}{\frac{\left(y+2\right)^2}{2^2}}+\frac{8}{\left(z+3\right)^2}\)
\(\ge\frac{8}{\left(x+1+\frac{y+2}{2}\right)^2}+\frac{8}{\left(z+3\right)^2}\ge\frac{64}{\left(x+\frac{y}{2}+z+5\right)^2}=\frac{256}{\left(2x+y+2z+10\right)^2}\)
Ta có: \(2x+4y+2z\le x^2+1+y^2+4+z^2+1=x^2+y^2+z^2+6\le3y+6\)
\(\Rightarrow2x+y+2z\le6\)
Suy ra \(A\ge\frac{256}{\left(6+10\right)^2}=1\)
Dấu \(=\)xảy ra khi \(x=z=1,y=2\).
Xét: \(\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}\)\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{\left(x^2+y^2\right)\left(x+y\right)}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}=x-y\)(1)
Tương tự, ta có: \(\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}-\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}=y-z\)(2); \(\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}-\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}=z-x\)(3)
Cộng theo vế của 3 đẳng thức (1), (2), (3), ta được:
\(\left[\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\right]\)\(-\left[\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\right]=0\)
\(\Rightarrow\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)\(=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Mà \(A=\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4}{\left(z^2+x^2\right)\left(z+x\right)}\)nên \(2A=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)\(\ge\frac{\frac{\left(y^2+z^2\right)^2}{2}}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{\frac{\left(y^2+z^2\right)^2}{2}}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{\frac{\left(z^2+x^2\right)^2}{2}}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{1}{2}\left(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{z^2+x^2}{z+x}\right)\)\(\ge\frac{1}{2}\left(\frac{\frac{\left(x+y\right)^2}{2}}{x+y}+\frac{\frac{\left(y+z\right)^2}{2}}{y+z}+\frac{\frac{\left(z+x\right)^2}{2}}{z+x}\right)\)\(=\frac{1}{4}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]=\frac{1}{2}\left(x+y+z\right)=\frac{1}{2}\)(Do theo giả thiết thì x + y + z = 1)
\(\Rightarrow A\ge\frac{1}{4}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Bài này t làm rồi, "nhẹ" không ấy mà :|
Dự đoán khi \(x=y=z=\frac{1}{3}\Rightarrow A=\frac{1}{4}\). Ta c/m nó là GTNN của A
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=Σ\frac{x^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\)
Cần chứng minh BĐT \(\frac{\left(x^2+y^2+z^2\right)^2}{Σ\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{x+y+z}{4}\)
\(\Leftrightarrow4\left(x^2+y^2+z^2\right)^2\ge\left(x+y+z\right)Σ\left(2x^3+x^2y+x^2z\right)\)
\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+6x^2y^2-2x^2yz\right)\ge0\)
\(\LeftrightarrowΣ\left(2x^4-3x^3y-3x^3z+4x^2y^2\right)+Σ\left(2x^2y^2-2x^2yz\right)\ge0\)
\(\LeftrightarrowΣ\left(x^4-3x^3y+4x^2y^2-3xy^3+y^4\right)+Σ\left(x^2z^2-2z^2xy+y^2z^2\right)\ge0\)
\(\LeftrightarrowΣ\left(x-y\right)^2\left(x^2-xy+y^2\right)+Σz^2\left(x-y\right)^2\ge0\)
BĐT cuối đúng tức ta có \(A_{Min}=\frac{1}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
P/s: Nguồn lời giải Câu hỏi của Vo Trong Duy - Toán lớp 9 - Học toán với OnlineMath, rảnh quá ngồi gõ lại :V
Đặt: \(E=\frac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
Ta có: \(F-E=\frac{x^4-y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4-z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4-x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)
\(\Leftrightarrow F=E\)
Từ đó ta có:
\(2F=\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\frac{y^4+z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{z^4+x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)
\(\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}+\frac{\left(y^2+z^2\right)^2}{2\left(y^2+z^2\right)\left(y+z\right)}+\frac{\left(z^2+x^2\right)^2}{2\left(z^2+x^2\right)\left(z+x\right)}\)
\(=\frac{\left(x^2+y^2\right)}{2\left(x+y\right)}+\frac{\left(y^2+z^2\right)}{2\left(y+z\right)}+\frac{\left(z^2+x^2\right)}{2\left(z+x\right)}\)
\(\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}+\frac{\left(y+z\right)^2}{4\left(y+z\right)}+\frac{\left(z+x\right)^2}{4\left(z+x\right)}\)
\(=\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}=\frac{1}{2}\)
\(\Rightarrow F\ge\frac{1}{4}\)
Dấu = xảy ra khi \(x=y=z=\frac{1}{3}\)
Bạn ơi, cho mình hỏi này
Sao có \(\frac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\frac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\) và sao có \(\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)}\)
Giải đáp tận tình hộ mình nhé.