K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2023

Đề bài yêu cầu gì vậy bạn? Rút gọn ạ?

4 tháng 10 2023

`@` Đặt `A=2^1+2^2+2^3+...+2^2017`

`=>2A=2(2^1+2^2+2^3+...+2^2017)`

`=>2A=2^2+2^3+...+2^2018`

`=>2A-A=(2^2+2^3+...+2^2018)-(2^1+2^2+...+2^2017)`

`=>A=2^2018-2`

Sửa đề: A=2+2^2+2^3+...+2^2017

=>2*A=2^2+2^3+2^4+...+2^2018

=>2A-A=2^2018-2

=>A=2^2018-2

15 tháng 8 2023

Ta có:

A = 2 + 2+ 23 + … + 22017

2A = 2.( 2 + 2+ 23 + … + 22017)

2A = 22 + 23 + 24 + … + 22018

2A – A = (22 + 23 + 24 + … + 22018) – (2 + 2+ 23 + … + 22017)

 Vậy  A = 22018 – 2

16 tháng 8 2023

Ta có: A = 2 + 2+ 23 + … + 22017

2A = 2.( 2 + 2+ 23 + … + 22017)

2A = 22 + 23 + 24 + … + 22018

2A – A = (22 + 23 + 24 + … + 22018) – (2 + 2+ 23 + … + 22017)

A = 22018 – 2

Vậy A = 22018 – 2

16 tháng 8 2023

tick cho mink nhé

😊

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

a.

$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$

$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$

$\Rightarrow S=2^{2018}-1$

b.

$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$

$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$

$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
 

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Câu c, d bạn làm tương tự a,b. 

c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$

d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$

11 tháng 7 2023

\(A=\dfrac{21}{22}+\dfrac{22}{23}=\dfrac{967}{506}>1\)

\(B=\dfrac{21+22}{22+23}=\dfrac{43}{45}< 1\)

Vậy \(A>B\)

11 tháng 7 2023

\(\dfrac{21}{22}\)   > \(\dfrac{21}{22+23}\) 

\(\dfrac{22}{23}\)   > \(\dfrac{22}{22+23}\)

Cộng vế với vế ta có:

A = \(\dfrac{21}{22}\) + \(\dfrac{22}{23}\) > \(\dfrac{21+22}{22+23}\) = B ⇒ A > B 

26 tháng 12 2021

làm gì đấy bạn

26 tháng 12 2021

a) 23 + (-77) + (-23) + 77 =
[23 + (-23)] + [(-77) + 77]
= …0+0=0……
b) (-2 020) + 2 021 + 21 + (-22)
=[(-2 020) + 2 021] + [21 + (-22)]
= …1……+ (-1)……..
= 0.