K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

a) \(\dfrac{3cy-4bz}{2x}=\dfrac{4az-2cx}{3y}=\dfrac{2bx-3ay}{4z}\)

=> \(\dfrac{3cy-4bz}{2x}.\dfrac{2x}{2x}=\dfrac{4az-2cx}{3y}.\dfrac{3y}{3y}=\dfrac{2bx-3ay}{4z}.\dfrac{4z}{4z}\)

=> \(\dfrac{6cxy-8bzx}{4x^2}=\dfrac{12azy-6cxy}{9y^2}=\dfrac{8bxz-12ayz}{16z^2}\)

Áp dụng t/c ...

\(\dfrac{6cxy-8bzx}{4x^2}=\dfrac{12azy-6cxy}{9y^2}=\dfrac{8bxz-12ayz}{16z^2}=\dfrac{6cxy-8bzx+12azy-6cxy+8bxz-12ayz}{4x^2+9y^2+16z^2}=\dfrac{0}{4x^2+9y^2+16z^2}=0\)

Ta có : 6cxy - 8bzx = 0

=> 6cxy = 8bzx

=>3cx = 4bz

=>\(\dfrac{c}{4z}=\dfrac{b}{3y}\) (1)

Ta có : 12azy - 6cxy = 0

=> 12azy = 6cxy

=> 4az = 2cx

=> \(\dfrac{a}{2x}=\dfrac{c}{4z}\) (2)

Từ (1),(2) => \(\dfrac{a}{2x}=\dfrac{b}{3y}=\dfrac{c}{4z}\) (ĐPCM)

3 tháng 1 2018

À mà , phần b) tương tự nhé

11 tháng 5 2022

\(a,\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\)

\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)

\(=\dfrac{2a\left(x-1^2\right)}{5b\left(x-1\right)\left(1+x\right)}\)

\(=\dfrac{2a\left(x-1\right)}{5b\left(x+1\right)}\)

\(b,\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)

\(=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{x+y+z}=x+y-z\)

\(\dfrac{2a\cdot x^2-4ax+2a}{5b-5bx^2}\)

\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)

\(=\dfrac{-2a\left(x-1\right)^2}{5b\left(x-1\right)\left(x+1\right)}=\dfrac{-2a\left(x-1\right)}{5b\left(x+1\right)}\)

\(\dfrac{4x^2-4xy}{5x^3-5x^2y}\)

\(=\dfrac{4x\cdot x-4x\cdot y}{5x^2\cdot x-5x^2\cdot y}\)

\(=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)

\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)

\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}\)

=x+y-z

\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3+y^3\right)\left(x^3-y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)

9 tháng 12 2021

\(1,Q=\dfrac{a^4-2a^2+a^3-2a+a^2-2}{a^4-2a^2+2a^3-4a+a^2-2}\\ Q=\dfrac{\left(a^2-2\right)\left(a^2+a+1\right)}{\left(a^2-2\right)\left(a^2+2a+1\right)}=\dfrac{a^2+a+1}{a^2+2a+1}\)

\(Q=\dfrac{x^2+x+1}{\left(x+1\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{x^2+x+1-\dfrac{3}{4}x^2-\dfrac{3}{2}x-\dfrac{3}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}\\ Q=\dfrac{\dfrac{1}{4}x^2-\dfrac{1}{2}x+\dfrac{1}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}=\dfrac{\dfrac{1}{4}\left(x-1\right)^2}{\left(x+1\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\\ Q_{min}=\dfrac{3}{4}\Leftrightarrow x=1\)

9 tháng 12 2021

\(2,\text{Từ GT }\Leftrightarrow\dfrac{ayz+bxz+czy}{xyz}=0\\ \Leftrightarrow ayz+bxz+czy=0\\ \text{Ta có }\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\\ \Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ca}\right)=0\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{cxy+ayz+bzx}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{0}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)

13 tháng 8 2017

1) \(\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\)

\(=\dfrac{2a\left(x^2-2x+1\right)}{-5b\left(x^2-1\right)}\)

\(=\dfrac{2a\left(x-1\right)^2}{-5b\left(x-1\right)\left(x+1\right)}=\dfrac{2a\left(x-1\right)}{-5b\left(x+1\right)}\)

2) \(\dfrac{x^2+4x+3}{2x+6}=\dfrac{x^2+x+3x+3}{2\left(x+3\right)}=\dfrac{x\left(x+1\right)+3\left(x+1\right)}{2\left(x+3\right)}\)\(=\dfrac{\left(x+3\right)\left(x+1\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)

3)\(\dfrac{4x^2-4xy}{5x^3-5x^2y}=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)

4) \(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}=x+y-z\)Học tốt nha you<3

p/s: tớ ko bk đã rút gọn hết chưa:(

13 tháng 8 2017

1, \(\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\)

\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)

\(=\dfrac{2a\left(x-1\right)^2}{5b\left(1-x\right)\left(1+x\right)}\)

\(=\dfrac{2a\left(x-1\right)}{5b\left(x+1\right)}\)

2, \(\dfrac{x^2+4x+3}{2x+6}\)

\(=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}\)

\(=\dfrac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)

\(=\dfrac{\left(x+1\right)\left(x+3\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)

3, \(\dfrac{4x^2-4xy}{5x^3-5x^2y}\)

\(=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)

4, \(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{x+y+z}=x+y-z\)

5, \(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)

\(A=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-b\right)}=\dfrac{2a\left(x-1\right)^2}{5b\left(1-b\right)}\)

\(B=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}=x+y-z\)