cho hình bình hành abcd .trên cạnh ad,bc the thứ tự ta lấy hai điểm h và g sao cho dh=bg và trên các cạnh ab,cd theo thứ tự lấy các điểm e,f sao cho ae=cf.chứng minh efgh là hình bình hành
GIÚP EM VỚI MAI E ĐI HỌC RỒI Ạ SOS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ BD
ta có HA=HD
EA=EB
=> HE là đg tb cuả tam giác ABD
=> HE//BD; HE=1/2BD (1)
cmtt ta có GF là đg tb cuả tam giác CBD
=> GF//BD;GF=1/2BD (2)
Từ (1)và (2)
=>HE=GF(=1/2BD); HE//GF(//BD)
=> EFGH là hình bình hành
AE//CG, AE = CG nên AECG là hình bình hành ⇒ O là trung điểm của EG. Tương tự O là trung điểm của HF.
AE=BF=CG=DH
=>EB=FC=DG=HA
Xét ΔAEH vuông tại A và ΔBFE vuông tại B có
AE=BF
AH=BE
=>ΔAEH=ΔBFE
=>EH=EF
Xét ΔBEF vuông tại B và ΔCFG vuông tại C có
BE=CF
BF=CG
=>ΔBEF=ΔCFG
=>EF=FG
Xét ΔFCG vuông tại C và ΔGDH vuông tại D có
CF=DG
CG=DH
=>ΔFCG=ΔGDH
=>FG=GH
=>EF=FG=GH=HE
ΔAHE=ΔBEF
=>góc AEH=góc BFE
=>góc AEH+góc BEF=90 độ
=>góc HEF=90 độ
Xét tứ giác EHGF có
EH=HG=GF=EF
góc HEF=90 độ
=>EHGF là hình vuông
( bạn tự vẽ hình nha )
a, Vì M nằm tren cạnh AB, N nằm trêm cạnh CD => AM \(//\) CN
Mà AM=CN ( Theo gt) . Do đó tứ giác AMCN là hình bình hành ( Theo đk 3)
b, Vì ABCD là hình bình hành => Góc A= Góc C
Xét 2 tam giác AMP và tam giác CNQ bằng nhau theo TH c-g-c ( Tự CM )
=> MP=NC( 2 cạnh tương ứng )(1)
CMTT 2 tam giác MBQ và NDP ta được MQ=PN (2)
Từ (1) và (2) ta có MPNQ là hình bình hành (đpcm)
Tâm đối xứng của hình bình hành ABCD là giao điểm O của các đường chéo AC và BD.