K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Ta có: ΔABC cân tại A

mà AE là đường trung tuyến

nên AE là đường cao

14 tháng 11 2021
a) Ta có: ΔAMB = ΔAMC ⇒ MB = MC (2 cạnh tương ứng) ⇒ M là trung điểm của BC b) Ta có: ΔAMB = ΔAMC ⇒ ˆ B A M = ˆ C A M ⇒ B A M ^ = C A M ^ (2 góc tương ứng) ⇒ AM là tia phân giác của ˆ A A ^ c) Ta có: ΔAMB = ΔAMC ⇒ ˆ A M B = ˆ A M C ⇒ A M B ^ = A M C ^ (2 góc tương ứng) mà ˆ A M B + ˆ A M C = 180 o A M B ^ + A M C ^ = 180 o ⇒ ˆ A M B = ˆ A M C = 90 o ⇒ A M B ^ = A M C ^ = 90 o ⇒ AM ⊥ BC

A B C M D E I

Gọi O gia điểm DM và AB, O' gia điểm EM và AC (mk quên lấy trong hình mất nên bạn lấy hộ mình nhé ) 

a) Vì M trung điểm BC Nên AM=MA=MC \(\Rightarrow\Delta BMA\)và \(\Delta AMC\)cân tại M.

Vì \(\Delta BMA\)cân tại M nên \(\widehat{MBA}=\widehat{MAB}\)Mặt khác \(\widehat{DAB}=90^0-\widehat{MAB};\widehat{DBA}=90^0-\widehat{MBA}\)Nên \(\widehat{DAB}=\widehat{DBA}\Rightarrow\Delta BDA\)cân tại D \(\Rightarrow DB=DA\).Tương tự \(AE=EC\)

Từ đó ta được \(\Delta DBM=\Delta DAM\left(c.g.c\right)\Rightarrow\widehat{BDM}=\widehat{ADM}\)nên DO phân giác tam giác BDA. Mà BDA là tam giác cân nên DO vuông góc với BA hay \(\widehat{MOA}=90^0\)

Tương tự \(\widehat{MO'A}=90^0\)

Nên \(\widehat{DME}=90^0\)hay tam giác DME vuông tại M 

Tam giác DMA đồng dạng tam giác MEA nên AE/MA = MA/DA hay CE/MA=MA/BD Suy ra \(BD\cdot CE=AM^2=\left(\frac{1}{2}\cdot BC\right)^2=\frac{1}{4}BC^2\left(ĐPCM\right)\)

b) Vì BD//CE nên theo ta-lét BD/CE=DI/IC Suy ra DA/AE=DI/IC => AI//EC nên AI vuông góc BC
                                                                       ~ Chúc bạn học tốt ~ 

c) Gọi H là giao điểm của AI và BC. Đường thẳng qua B song song HE cắt đường thẳng qua C song song HD tại P. Chứng minh D, P, E thẳng hàng. Giúp mik với

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔEMB=ΔFMC

=>EM=FM

=>M là trung điểm của EF