Bài 1: Cho tam giác ABC, ở phía ngoài của tam giác ABC, dựng các tam giác vuông cân đỉnh A là tam giác ADB và tam giác ACE. Gọi P, Q, M thứ tự là trung điểm của BD, CE và BC. Tính các góc của tam giác PQM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) góc DAC=90+BAC
góc BAE=90+BAC
=> góc DAC=BAE
Xét t.g DAC và BAE :
AD=AB
góc DAC=BAE
AC=AE
=> = nhau
=> CD=BE
- Xét ΔDAC và ΔBAE ta có:
AB=AD (ΔABD vuông cân ở A)
AC=AE (ΔACE vuông cân ở A)
DAC^=BAE^=BAC^+90o
→ΔDAC=ΔBAE (cgc)
→DC=BE (2 cạnh tương ứng) (1)
- Ta có P;M;N là trung điểm BC;BD;EC nên
+ PN là đường trung bình ΔBEC→PN=EB/2 (2);PN//EB
+ PM là đường trung bình ΔBCD→PM=DC/2 (3);PM//DC
+ từ (1); (2); (3) ta có PN=PM (*)
+ M1^M1^ là góc ngoài tại đỉnh M của ΔEMC nên M1^=E1^+MCE^=E1^+C1^+C2^
Mà C2^=E2^ (ΔDAC=ΔBAE). Thay vào ta có
M1^=E1^+C1^+E2^=AEC^+C1^=90o (vì ΔAEC vuông cân ở A)
→DC⊥BE→DC⊥BE. Mà BE//PN→PN⊥DC
Mà PM//DC→PN⊥PM→MPN^=90o (*)(*)
+ Từ (*) và (*)(*) ta có ΔMPN vuông cân ở P (đpcm)