K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có vecto \(\overrightarrow {OM}\) với điểm đầu là O và điểm cuối là M như hình 4.

b) Cách xác định tọa độ điểm M là: 

• Từ M kẻ đường thẳng vuông góc với trục hoành và cắt trục hoành tại điểm H ứng với số a. Số a là hoành độ của điểm M.

• Từ M kẻ đường thẳng vuông góc với trục tung và cắt trục tung tại điểm K ứng với số b. Số b là tung độ của điểm M.

Cặp số (a; b) là toạ độ của điểm M trong mặt phẳng toạ độ Oxy.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Tung độ của điểm A là: 2

Hoành độ của điểm A là: 2

b) Để xác định toạ độ của một điểm M  trong mặt phẳng toạ độ Oxy, ta làm như sau (Hình 2):

• Từ M kẻ đường thẳng vuông góc với trục hoành và cắt trục hoành tại điểm H ứng với số 2. Số 2 là hoành độ của điểm M.

• Từ M kẻ đường thẳng vuông góc với trục tung và cắt trục tung tại điểm K ứng với số 2. Số 2 là tung độ của điểm M.

Vậy M (2;2).

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Dựa vào hình vẽ, ta có: \({x_A} = 2,{y_A} = 2\) và \({x_B} = 4,{y_B} = 3\)

b) Để \(\overrightarrow {OM} {\rm{ }} = {\rm{ }}\overrightarrow {AB} \) thì điểm M phải có tọa độ: \(M\left( {1;2} \right)\). Do đó, toạn độ của vectơ\(\overrightarrow {AB} \)là \(\overrightarrow {AB}  = \left( {2;1} \right)\)

c) Do \(\overrightarrow {AB}  = \left( {2;1} \right)\) nên \(a = 2,b = 1\)

Ta có: \({x_B} - {x_A} = 4 - 2 = 2\), \({y_B} - {y_A} = 3 - 2 = 1\)

Vậy \({x_B} - {x_A} = a\) và \({y_B} - {y_A} = b\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Gọi \(M\left( {a;b} \right) \Rightarrow \overrightarrow {AM}  = \left( {a - 2;b - 3} \right)\)

Tọa độ vecto \(\overrightarrow {BC}  = \left( {4; - 2} \right)\)

Để \(\overrightarrow {AM{\rm{ }}}  = {\rm{ }}\overrightarrow {BC}  \Leftrightarrow \left\{ \begin{array}{l}a - 2 = 4\\b - 3 =  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 6\\b = 1\end{array} \right.\)

Vậy để \(\overrightarrow {AM{\rm{ }}}  = {\rm{ }}\overrightarrow {BC} \) thì tọa độ điểm M là:\(M\left( {6;1} \right)\)

b) Gọi \(N\left( {x,y} \right) \Rightarrow \overrightarrow {NC}  = \left( {3 - x, - 1 - y} \right)\)và \(\overrightarrow {AN}  = \left( {x - 2,y - 3} \right)\)

Do N là trung điểm AC nên \(\overrightarrow {AN}  = \overrightarrow {NC}  \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 3 - x\\y - 3 =  - 1 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{2}\\y = 1\end{array} \right.\) . Vậy \(N\left( {\frac{5}{2},1} \right)\)

Ta có: \(\overrightarrow {BN} {\rm{ }} = \left( {  \frac{7}{2};0} \right)\) và \(\overrightarrow {NM}  = \left( {\frac{{ 7}}{2};0} \right)\). Vậy \(\overrightarrow {BN} {\rm{ }} = {\rm{ }}\overrightarrow {NM} \)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:

\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}}  = 5\)

b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Để xác định điểm A, ta làm như sau (Hình 8):

• Qua O kẻ đường thẳng d song song với giá của vectơ \(\overrightarrow u \).

• Lấy điểm A trên đường thẳng d sao cho hai vectơ \(\overrightarrow {OA} \), \(\overrightarrow u \) cùng hướng và độ dài đoạn thẳng OA bằng độ dài vectơ \(\overrightarrow u \).

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Cho điểm M(x;y) bất kì, xác định \({M_1},{M_2}\) lần lượt là hình chiếu vuông  góc của M xuống trục hoành và trục tung

Dễ thấy \(\overrightarrow {O{M_1}}= x\overrightarrow i ; \, \overrightarrow {O{M_2}}  = y \overrightarrow j \)

Áp dụng quy tắc hình bình hành ta có \(\overrightarrow {OM}  = \overrightarrow {O{M_1}}  + \overrightarrow {O{M_2}}  = x\overrightarrow i  + y\overrightarrow j \)

Vậy tọa độ của vectơ \(\overrightarrow {OM} \) là (x;y), trùng với tọa độ điểm M.