Xét mẫu số liệu được xếp theo thứ tự tăng dần:
1 2 3 4 5 6 7 8 9 10 11
Tìm trung vị của mẫu số liệu trên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong mẫu số liệu (1), hiệu giữa số đo lớn nhất và số đo nhỏ nhất là
\(R = {x_{\max }} - {x_{\min }} = 16 - 14 = 2\)
b) +) Sắp xếp các số liệu của mẫu (1) theo thứ tự tăng dần, ta được:
2 5 6 7 8 9 10 11 12 14 16
+) Vậy \({Q_1}{\rm{ }} = 6;{\rm{ }}{Q_2}{\rm{ }} = {\rm{ }}9;{\rm{ }}{Q_3}{\rm{ }} = {\rm{ }}12\) . Suy ra \({Q_3} - {Q_1}{\rm{ = }}12{\rm{ }} - 6 = 6\)
*) Sắp xếp thứ tự của mẫu số liệu theo thứ tự không giảm ta được: 1 2 4 5 9 10 11
a) Số trung bình cộng của mẫu số liệu trên là: \(\overline x = \frac{{1{\rm{ + }}2{\rm{ + }}4{\rm{ + }}5{\rm{ + }}9{\rm{ + }}10{\rm{ + }}11}}{7} = 6\)
b) Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 7 số liệu ( lẻ ) nên trung vị \({Q_2} = 5\)
c) Tứ phân vị của mẫu số liệu trên là:
Trung vị của dãy 1, 2, 4 là: \({Q_1} = 2\)
Trung vị của dãy 9, 10, 11 là: \({Q_3} = 10\)
Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 2\), \({Q_2} = 5\), \({Q_3} = 10\)
d) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 11 - 1 = 10\)
e) Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 10 - 2 = 8\)
g) Phương sai của mẫu số liệu trên là: \({s^2} = \frac{{\left[ {{{\left( {1 - \overline x } \right)}^2} + {{\left( {2 - \overline x } \right)}^2} + ... + {{\left( {11 - \overline x } \right)}^2}} \right]}}{7} = \frac{{96}}{7}\)
h) Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}} = \sqrt {\frac{{96}}{7}} \)
Ta có: 9 là một số lẻ nên số trung vị cùa mẫu số liệu trên là số ở vị trí chính giữa
Do đó; số trung vị của mẫu số liệu là: Me= 7
Chọn C
Bài 1:
a: 3/4=54/72
-1/9=-8/72
-5/8=-45/72
b: -1/7=-8/56
-1/-8=1/8=7/56
3/4=42/56
8 6 2 [5 10 1] 3 7 9 4
8 6 [2 3] 7 9 4 5 10 1
8 6 7 9 [4 5] 10 1 2 3
8 [6 7] 9 10 1 2 3 4 5
[8 9 10] 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8 9 10
\(\dfrac{1}{2};\dfrac{2}{3};\dfrac{3}{4};\dfrac{4}{5};\dfrac{5}{6};\dfrac{6}{7};\dfrac{7}{8};\dfrac{8}{9};\dfrac{9}{10}\)
Mẫu số liệu trên được xếp có 11 số liệu nên \({M_e} = 6\).